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ABSTRACT 

 

The purpose of this study is to investigate the effect of missing data in computerized 

adaptive tests (CAT) on test construct validity.   The CAT method is now becoming more 

popular in educational assessment. However, conducting construct validity on CAT data has 

unique challenges for researchers because of the nature of missing data in the CAT. Unlike linear 

tests in which missing mechanisms that is defined as missing type can be regarded as missing at 

random, the CAT algorithm determines that missing CAT  is not random. The study using 

simulation methods examined the effect of different missing data generated from different IRT 

models on recovery of internal structure of tests at both item and item cluster levels. Results 

show it is impossible to recover the CAT test internal structure by using items as observable 

variables, but by parceling items and using parcels as observable variables, the test internal 

structure can be recovered. Parceling has the effect of over fitting models.    
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INTRODUCTION 

 

Student achievement as measured in K-12 achievement tests is an abstract attribute. The 

construct of achievement is theoretically defined and operationalized by a test. The construct of a 

test is a theoretical representation of the underlying traits, concepts, attributes, processes, or 

structures the test is designed to measure and directly relates to test validity (Cronbach, 1971; 

Messick, 1989). The validity of a test is the extent to which it is designed to measure, and 

according to the Standards for Educational and Psychological Testing (American Educational 

Research Association [AERA], American Psychological Association [APA], & National Council 

on Measurement in Education [NCME], 1999), validity is the most important consideration in 

test development and evaluation.  Five sources of validity evidence specified in the Standards 

include: (a) test content, (b) response process, (c) internal structure, (d) relations to other 

variables, and (e) consequences of testing.  The test validation process in K-12 assessments relies 

heavily on content validation procedures (Kane, 2006; Lissitz & Samuelsen, 2007), but it 

shouldn’t diminish the need for multiple sources of evidence to establish internal test meaning,  

including theoretical components, even for educational tests (Embretson, 2007).  Any source of 

validity evidence should be viewed as supporting a specific interpretation or use of test scores.  

Currently in K-12 education, most state tests and large-scale standardized assessment 

programs provide all or part of five sources of validity evidence for the interpretation of 

achievement test results in their test technical manuals.  Different statistical techniques have been 

used to provide evidence to establish valid inference.  Because confirmatory factor analysis 

(CFA) deals with relationships among sets of underlying latent variables and a larger number of 

observable indicators at either item or item cluster levels, CFA is currently the most frequently 

used method to provide evidence on the internal structure of a test and addresses the question of 

whether the items or subtests measure the hypothesized latent variable(s). However, applying the 

CFA method to investigate internal structure of tests has two major practical challenges: using 

categorical observable variables and missing data.   

For the first challenge, the choice of the level of an indicator in general factor analysis, 

has a significant effect on evaluating the construct.  For example, the choice of item level 

indicators or item cluster/parcel indicators that sum or average item scores as observable 

variables in the CFA could impact model evaluation result (Bandalos, 2002; Bandalos & Finney, 

2001; Hall, Snell & Foust, 1999; Little, Cunningham, Shahar & Widaman, 2002; Nasser & 

Wisenbaker, 2003).  Most item level variables used in K-12 assessment are categorical variables 

that are binary/dichotomous responses from multiple-choice or griddable items, and polytomous 

responses from constructed response items, performance events, or innovative items. Through 

the use of item parcels/clusters/testlets, sub-tests level variables can be assumed to be continuous 

observable variables and also be used as such in most current practices. However, some 

psychometric concerns (Bandalos & Finney, 2001; Bollen &Lennox, 1991; Coanders, Satorra, & 

Saris, 1997; Hall, Snell, & Foust, 1999; Marsh & O’Neill, 1984; Shevlin, Miles, & Bunting, 

1997) over item parceling include: (a) loss of information about the relative importance of 

individual items, (b) parceling of ordinal scales with undefined values, (c) limited range of latent 

variables and biased variance and covariance parameters, and (d) underestimate the relationships 

of latent variable due to limited reliability of the scale. When the sample size is small, the 

benefits of using parcels over items as observable indicators (Bandalos, 2002; Bandalos & 

Finney, 2001; Bentler, 2009; Cattell, 1974; Hau & Marsh, 2004; Marsh, Hau, Balla, & Grayson, 

1998; Nasser & Wisenbaker, 2003; West, Finch, & Curran, 1995; Yang & Green, 2010a) include: 
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(a) having fewer free parameters to be estimated compared to the number of observations and 

improves model fit, (b) reducing the problems of non-normality, (c) not requiring data 

transformation, and (d) robust normal theory estimation, or distribution-free estimation.  

However, these benefits will diminish when items are unidimensional or have high item 

communalities, and sample sizes are large.   

One interesting issue is that the effect of parceling on estimates of factor analysis 

parameters closely relates to the choice of item response theory (IRT) models that most large 

scale programs use to score, equate, and scale the tests. The IRT models can be equivalent to 

item factor analysis (IFA) within latent variable modeling framework (McDonald, 1999, 2000; 

Muthen & Asparouhov, 2002; Muthén & Muthén, 2006). The IFA model is factor analysis that 

uses items as observable variables. Instead of modeling the linear relationship between indictors 

and latent variable(s) as is done in CFA, nonlinear relationships between items and the latent 

variable set are modeled through link functions that link latent variables to categorical 

observable variables. The IFA with equal discrimination functions or factor loadings is 

equivalent to the Rasch model (Rasch, 1960) or the one-parameter IRT model (Hambleton & 

Swaminathan, 1985), in which item discrimination parameters are constant. Other dichotomous 

IRT models, such 2-parameter and 3-parameter IRT models, can model items with different 

discrimination parameters, which is equivalent to IFA with non-equal equal discrimination 

functions or factor loadings.  Studies on the parceling effect on nonlinear factor analysis with 

non-equal discrimination functions or factor loadings conditions are very limited (Ferrando, 

2009). Most studies on the parceling effect consider only the parceling of continuous indicators 

that have equal discrimination functions or factor loadings and under these conditions. It is not 

surprising that parceling has little impact on the relationship between indicators and latent 

variables (Alhija & Wisenbaker, 2006; Bandolas, 2002; Hau & Marsh, 2004) in linear cases. 

Overall, parceling items is currently a commonly used technique based upon theoretical 

rationales.  

The second challenge of using CFA to conduct construct validity analysis is missing data. 

The reasons  missing data exists in educational assessments are numerous; some reasons include: 

(1) student behaviors, such as students motivation, failing to attend, unwilling to answer, 

cheating in taking a test; (2) scoring, such as scoring mistakes; and (3) administration and 

operation, such as lost test booklets, scanning mistakes, bad weather, fire alarm.  Other reasons 

are due to test design, such as the choice of linear tests vs. computerized adaptive tests (CAT). 

According to Rubin’s (1976) missing data mechanisms, educational data can be classified as 

missing completely at random (MCAR), missing at random (MAR), or missing not at random 

(MNAR). Within the latent variable modeling framework (Muthén, Asparouhov, Hunter, & 

Leuchter, 2011), if missingness is related to observed variables, then it can be MAR; if 

missingness is related to latent variables, such as student achievement ability, then it is MNAR 

and such missing data refer to non-ignorable missing data. The focus of this paper is on data 

missing due to test design, i.e., missing data in CAT. Because a CAT operates on an algorithm 

that selects items from an item bank to match a student’s provisional ability estimate, each 

student test event contains responses to a small subset of the item pool. Two additional features 

of CAT data compared to linear test data are: (1) restricted range of person ability for given 

items and (2) persons with different ability get different items.  If a whole item bank is imagined 

as a linear test, then missingness in a CAT can be taken as due to item responses missing from 

the collection of test sessions.  For example, for Reading and Mathematics of Measure of 

Academic Progress (MAP, NWEA, 2011) tests, typical missing rates are around 98% because 
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the ratio of item pool size to test length is around 50 and data are very sparse. Figure 1 illustrates 

five missing designs. For simplification, all designs assume there is no person missing data.  

Design 1 as the baseline design shows no missing on item and response, and Design 2 shows 

missing on the response. Both Designs 1 and 2 represent responses from linear tests shown in 

Tables 1 and 2.  Design 3 and 4 represent neither linear nor CAT cases exactly because there will 

be no missing item responses in linear tests and some persons will answer some items in CATs. 

These two designs reflect the fact that observable indicators are not complete and are sampled 

from the existing pool of observable indicators according to content requirements in most CAT 

situations.  The difference between Design 3 and 4 is that Design 4 contains additional missing 

responses.  Tables 3 and 4 show the data pattern for CAT as Design 5. Besides the missing rate 

attributed to the CAT algorithm, restricting ability range in data also has an impact on factor 

analysis because of the restricted of range of observation variables.   

Nowadays, CAT is becoming more popular in educational assessment. Right now, 

Oregon, Delaware, and Idaho use CAT in their state assessments, and several other states 

(Georgia, Hawaii, Maryland, North Carolina, South Dakota, Utah, and Virginia) are in various 

stages of CAT development.  As a matter of fact, one of the two consortia was created as part of 

the Race to the Top initiative. The SMARTER Balanced Assessment Consortium (SBAC), 

consisting of over half of the states, is committed to a computerized adaptive model because it 

represents a unique opportunity to create a large-scale assessment system that provides 

maximally accurate achievement results for each student (Race to the Top Assessment Program, 

2010). There is an urgent need to gain understanding about assessing construct validity in a CAT 

in real operation. The purpose of this study is to investigate the effect of missing data in CAT on 

construct validity of a test.  

 

METHOD 

 

Almost all large-scale standardized K-12 testing programs use an IRT model in scoring, 

equating, and scaling. The internal structure of a test is often reported as the evidence related to 

construct validity based on factor analysis. Some test programs report the internal structure using 

items as observable indicators or variables in factor analysis, others use item testlets or parcels as 

observable indicators or variables in factor analysis, and some other reports use both. The 

theoretical framework of this study is to use a unifying approach that combines both linear and 

non-liner factor analyses so that the impact of missing data on factor structure of a test can be 

compared at both item and item parcel/testlet levels.  The linear factor analysis models the 

relationship between latent variables and continuous observable variables. While nonlinear factor 

analysis models relationships among latent variables and categorical observable variables,  the 

IRT model can be considered as a special case of nonlinear factor analysis. 

 

1. Factor Model 

1.1 Continuous  observed variables 

Confirmatory factor analysis (CFA) that describes the covariance among observed 

variables as a function of latent factors makes some assumptions. These assumptions include that 

unique factors are normally distributed or independent with normally distributed residuals, 

manifest indictors are continuous and conditionally normal distributed, and there is a linear 

relationship between observed and latent factors. When sub-content or goal scores from tests are 

used as manifest indictors, the distribution properties usually meet these assumptions.  Let yij 
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denote the continuous observed variables for person i =1, …, N on variable  j=1,.., J, then the 

relationship between manifest indictors yij and a common latent factor f can be modeled as, 

 

                                                      ijijjijy   ,                                                                   (1) 

 

where j is an intercept and lj is a factor loading for item j, i is a common factor score for person 

i, and eij is residual.  For more complicated the model such as the bifactor model, the equation 1 

can be expanded to  

                                                        Y = t + y +                                                                   (2) 

 

where Y is a (N x 1) column vector of manifest indictors, t is a (N x 1) column vector of 

measurement intercepts, y is a (N x k) matrix of factor loadings,  is a (k x 1) column vector of 

factors, and  is a (N x 1) column vector of residuals.  For examples, figure 2 depicts a common 

factor model that has four observed continuous variables (assume that t =0) and the model can 

be expressed in equation 3: 

 

                                                       

 



























































4

3

2

1

4

3

2

1

4

3

2

1



















y

y

y

y

.                                                        (3)   

 

 

Figure 3 illustrates the bifactor model that can be expressed in following equation: 
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1.2  Categorical  observed variables 

When items that are categorically scored (such as dichotomously scored multiple-choice 

items) are used as observed variables, the distribution properties assumed by the CFA are usually 

violated. The categorical confirmatory factor analysis (CCFA) or item factor analysis (IFA) 

methods are needed.  Christoffersson (1975) defined a set of unobservable variables, y*, which 

follows the multiple common-factor model described in equation 2, 

 

                                                      Y* = t + y + .                                                                  (5) 

 

Christoffersson (1975) assumed that the binary response variables yj for jth unique factor, can be 

defined as 
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As shown in Figure 4, latent response variable formulation defines a threshold  on a 

continuous underlying y* variable.  If y* follows a logistic distribution, the IFA for dichotomous 

items can be obtained by modifying equation 1 through logit links: 

 

                                                       ijjijy  )(logit ,                                                                    (7) 

 

The difference between logit and probit links is that the y* has a variance of 3.29 (SD = 1.7) for 

the logistic distribution and 1.0 for the normal distribution.  From equations 1 and 7, factor 

loading j represents a discrimination parameter, while threshold parameter j is an easiness 

parameter for CFA and difficulty parameter for IFA.     

 

2. Item Response Models (IRT) – Bifactor, 2PL, 1PL, and Rasch Models 

First, let yij(k) denote the dichotomous  response for person i =1, …, N on item j=1,.., J, 

embedded within item group k=1,…,K, with constraint ∑   
 
     . Second, let u denotes the 

response vector of all responses. Then the overall probability of person i answering item j within 

item group k correctly is conditioned on k group-specific latent ability k and a general latent 

ability g in the bifactor model (Gibbons and Hedeker, 1992), which is a special case of two-

parameter multidimensional logistic model (Reckase, 1985), can be shown in Equation 1. 

 

                   P(y|)=∏             
    g, k) =

)](exp[1

1

jkjkgjg daaD  
                      (8)  

 

Where  = (g, 1, 2, …, k, …, K), ajg is general latent ability (g) discrimination 

parameter for item j, ajk is k group-specific latent ability discrimination parameter for item j and ,  

22

jkjgjj aabd  is the multidimensional intercept parameter for item j and bj is the difficulty 

parameter for item j in two-parameter unidimensional logistic model (2PL), and D=1.7 is a 

scaling constant. In a bifactor model, the general latent ability g and the group-specific latent 

ability k are orthogonal. When ajk =0 and k=0 (and simplifying g=), equation 1 becomes the 

two-parameter item response model (2PL) where  is person ability parameter, bj is item 

difficulty parameter, and   N(0, 1),  

                    P(y|) =∏          
    ) =

)](exp[1

1

jj bDa  
 ,                                            (9)  

when aj=1 and D=1, the equation 2 becomes Rasch model,  

 

                    P(y|) =∏          
    ) =

)exp(1

1

 jb
,                                                      (10)  

When  aj=1 and D=1.7, the equation 2 becomes one-parameter IRT model (1PL), 

                    P(y|) =∏          
    ) =

)](exp[1

1

 jbD
.                                                  (11)  

 

3.  Relationship between Factor Models and Item Response Models 

The IRT models are equivalent to item level factor models within latent variable 

modeling framework (McDonald, 1999, 2000; Muthen & Asparouhov, 2002; Muthén & Muthén, 



 7  

 

2006).  Assume a single factor  with factor mean a and factor variance f for binary items, and 

IRT latent variable   has a standard normal distribution  ~ N(0,1). Then  = a + √  .  For the 

logit link function,  

 

         P(u|) =∏          
    ) =

)](exp[1

1

)exp(1

1

jjjj bDa 
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Figures 5 to 7 illustrate Rasch, 2PL, and bifactor models in IFA framework. 

 

4. Research Design 

In order to examine the impact of CAT missingness on test constructs under different 

conditions, the independent variables manipulated in the study are missing designs (5 designs), 

IRT models (Rasch, 2PL, and bifactor), observation levels (item and testlet), test length, testlet 

length, missing rate, and missing mechanisms.  The dependent variables are fit statistics.  In 

order to exam the  models fit to data generated from different models, each of the 3 models data 

are calibrated using data from rest of two models.   

The reason to choose a relatively high ratio (0.6 in this study compared to most CAT 

cases where ration is 0.05) of test length to size of item bank is that the major intention of this 

study is to investigate missing due to CAT design and the unique characteristics of data 

missindue to item difficulty range restriction caused by selection of item information to match 

provisional ability.  This study attempts to separate the effects of data missing in linear test and 

missing in CAT. For example, in Design 3, the items are randomly selected from a bank and the 

missing mechanism is MCAR; in Design 5, items are not randomly selected from a bank and the 

missing mechanism is MNAR. By checking any difference in dependent variables between the 

two designs, the effect of missing data will be revealed.  All CAT data were generated based on 

two item selection criteria: (1) maximum Fisher information method and (2) sub-content 

balanced method (Kingsbury & Zara, 1989). 

Table 5 presents the research design. It is worth noting that although all data are 

simulated, no replication has been done because there is no intent to check calibration quality at 

the item level.  All testlets are sums of items for a given sub-content.  For the bifactor model in 

equation 8, item discrimination parameters for group-specific factors/latent variables are fixed 

and have logit values of 0.5, 1.0, 1.5, 2.0, and 2.5 for corresponding specific factors. The general 

factor is distributed as  ~ N(0,1). All items are dichotomously scored items. 

 

5.  Parameter Distributions  

Table 6 lists the parameter distribution used to generate response data for different 

models. All sample sizes are 10,000 persons.  
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6. Evaluation Criteria 

 The dependent variables are used to evaluate the data-model fit. Several well-known 

goodness-of-fit indexes (GOF) were used to evaluate model fit: the chi-square χ
2
coefficient, the 

comparative fit index (CFI), the Tucker-Lewis Index (TLI), weighted root-mean-square residual 

(WRMR), the root mean square error of approximation (RMSEA) and the standardized root 

mean square error residual (SRMR).  When interpreting a significant χ
2
, sample size must be 

taken into account because significant χ
2
 does not necessarily indicate a model misfit when the 

sample size is large. 

Hu and Bentler (1999) recommended using combinations of GOF indices to obtain a robust 

evaluation of data-model fit in structural equation modeling.  The cutoff criterion values they 

recommended were CFI > 0.95, TLI > 0.95, RMSEA < 0.06, and SRMR < 0.08.  For WRMR, 

the cutoff value is WRMR<1.00 (Yu, 2002). However, Hu and Bentler offer cautions about the 

use of GOF indices, suggesting that these values should be treated as “rules of thumb” instead of 

rigid standards. Current practice seems to have incorporated these new guidelines without 

sufficient attention to the limitations.  Moreover, some researchers (Beauducel & Wittmann, 

2005; Fan & Sivo, 2005; Marsh, Hau, & Wen, 2004; Yuan, 2005) believe that these cutoff values 

are too rigorous and may have limited generalizability to the levels of misspecification 

experienced in typical practice.  In general practice, a “good enough” or “rough guideline” 

approach for absolute fit indices and incremental fit indices (such as CFI, GFI, NFI, and TLI) 

have been quite commonly accepted (Lance, Butts, & Michels, 2006). Under the relaxed criteria, 

cutoff values should be above 0.90 (0.90 benchmark), and for fit indices based on residuals 

matrix (such as RMSEA and SRMR), values below 0.10 are usually accepted. In this study, two 

sets of criteria were used to evaluate model fit. The first set of criteria is Hu and Bentler’s criteria 

and the second set of criteria is relaxed criteria.  

 

7. Data Analysis 

All response data of different IRT models were generated using SAS (SAS Institute Inc., 

2008) and calibrated using Mplus (Muthen & Muthen, 2011). For all ordered categorical data, 

weighted least squares – mean, variance (WLSMV) estimators (Muthén & Muthén, 1998) were 

used and for all continuous data, maximum likelihood (ML) estimators were used. In theory, the 

Rasch model is a special case of 2PL, and 2PL is a special case of the bifactor model, so that 

comparison among three nested models is possible.  However, this study did not examine this 

information. It does not compare these nested models. Even though Mplus provides statistics, 

such as χ
2
 difference, Akaike information criterion (AIC) or Bayesian information criterion (BIC) 

for non-nested model comparison, these results are not reported in this study   

 

 

RESULTS 

 

Table 7 displays the summary of goodness-of-fit results across observation level, models, 

and test designs.  Table 8 presents patterns of data model fit based on different sets of fit criteria 

across observation level, models, and test designs. 

 

1. Item Level Results 

The study aims is to investigate overall data model fit when items are used as observable 

indicators, not individual item parameter recovery.  Results in Table 7 show that all model 
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calibrations converged except for Design 5 at the item level.  Table 8 shows, in general, that 

from simple (Rasch) to complex (bifactor) models, while the complex models fit data generated 

from complex models well: (1) models recover well for their own data except for the bifactor 

model based on criteria set one and (2) simple models do not fit well for data generated from 

more complex models. The intention of both Design 3 that uses randomly selected items from 

the item bank and Design 4 that adds missing responses to Design 3 data is to see the effect of 

both item and response missing data without the effects of an adaptive algorithm. Clearly, for 

both designs, the model fits the data very well and either item or response missing data has 

drastic impact on construct recovery, i.e. the estimated construct of test is very close to the true 

construct of test.  The results imply that for IRT Rasch and 2PL models, it will be reasonable to 

use item level data to conduct factor analysis and provide construct validity evidence for 

fixed/linear form tests; for bifactor model, item level data fits not excellent but, still fit data when 

relaxed criteria are used. 

However, this is not the case for CAT and design 5 results show that it is impossible to fit 

CAT data into factor models at the item level for given simulated data and this implies that it is 

meaningless to investigate construct validity of tests using items as indicators for CAT data. 

Considering the goodness of fit for Designs 3 and 4, the only reason for non-convergence 

occurring for Design 5 is caused by tne missing mechanism (MNAR) of CAT algorithm that 

restricts the ranges and variance of both ability and item difficulty, thus restricting covariance.    

 

2. Testlet Level Results 

From Tables 7 and 8, it appears that overall data-model fit indicess are substantially  

improved at the testlet level compared to those fort item level data. CAT data fit 2PL and 

bifactor models well based on relaxed fit criteria.  Even for criteria set one, the bifactor model fit 

CAT data well but neither Rasch nor 2PL models fit data as well as the bifactor model. However, 

at the testlet level, models tend to over-fit data in which data from more complex models can be 

fitted well with the simpler model.  For example, the Rasch model fits data generated from 2PL 

and bifactor models well. One potential explanation for the difference in fit between Rasch/2PL 

models and the bifactor model is the fact that both Rasch and 2PL are unidimensional models 

while the bifactor model is a multi-dimensional model. For a unidimensional model, the choice 

of items in testlets may have a negligible effect on model fit, while for multi-dimensional model, 

the interaction between choice of item in testlet and group-specific factors may influence the 

model fit. Because the bifactor model takes group specific factors into account in modeling, the 

fit may be improved. 

 

DISCUSSION AND CONCLUSIONS 

 

Construct validity evidence closely relates to statistical methods such as CFA and IFA 

that deal with internal structures of achievement tests. Until recently, researchers have paid 

virtually no attention to the problem of the test construct validity effects in computerized 

adaptive tests.  In this study, at both item and testlet levels, the effects of data missing 

mechanisms in different test designs are investigated.  First, at the item level, results show that 

both item and response missing data characterized as MCAR for linear tests have no differential 

effects on models fit across Designs 1 to 4. Both unidimensional models (Rasch and 2PL) fit data 

well but the multidimensional model (bifactor model) recoveres data poorly. No unidimensional 

and multidimensional models fit CAT data mainly because the CAT algorithm restricts the range 
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of person ability and item difficulty.  Our results suggest that it is impossible to recover the 

construct of CAT at the item level across models–even though recovering of construct of linear 

tests are reasonably good. Second, at the testlet level, we demonstrate that item parceling 

substantially improve models fit.  At least for criteria set one, constructs of CAT can be 

recovered partially for unidimensional models (Rasch and 2PL) and fully for the 

multidimensional model (bifactor model).  For both sets of criteria, constructs of linear tests 

under Design 1 to 4 can be well recovered.  The study shows that parceling over-fits model.         

Limitations of this study include: (1) small size of item bank and (2) replication. Because 

of time intensive calibrating the item bank for all three models (290 hours per model per 

condition if 250 items used), relatively small item bank size were chosen and this affects the 

missing rate in CAT data. All data studied are based on only one replication which may affect 

generalizability of conclusions. The future directions should include increasing the size of the 

item bank and more replications under different simulation conditions. 
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Table 1. No Missing Data (Item Responses) from a Linear Test with Test Length = 5 and  

               Number of Person = 20 

 

 

Item  

  
 

Sub-content 1  
Sub-content 2  Sub-Total1 Sub-Total2 

Person I1 I2   II1 II2 II3  RS1 RS2 

P1 1 1 
 

1 1 0  2 2 

P2 1 1 
 

1 0 0  2 1 
P3 1 0 

 
1 1 0  1 2 

P4 1 1 
 

0 1 0  2 1 

P5 1 1 
 

1 0 1  2 2 
P6 1 1 

 
0 0 0  2 0 

P7 1 0 
 

1 1 0  1 2 

P8 1 1 
 

0 1 0  2 1 
P9 1 1 

 
1 0 1  2 2 

P10 1 1 
 

0 0 0  2 0 

P11 1 1 
 

1 0 0  2 1 
P12 1 0 

 
1 1 0  1 2 

P13 1 1 
 

0 1 0  2 1 

P14 0 1 
 

1 0 1  1 2 
P15 1 1 

 
0 0 0  2 0 

P16 1 0 
 

1 1 0  1 2 

P17 1 1 
 

0 1 0  2 1 
P18 1 1 

 
1 1 0  2 2 

P19 1 1 
 

1 0 0  2 1 

P20 1 0   1 1 0  1 2 

 

Table 2. Missing Data (Item Responses) from a Linear Test with Test Length = 5 and Number  

                of Person = 20 

 

 

Item  

  
 

Sub-content 1  
Sub-content 2  Sub-Total1 Sub-Total2 

Person I1 I2   II1 II2 II3  RS1 RS2 

P1 1 1 
 

1 1 0  2 2 

P2 1 . 
 

1 0 .  1 1 
P3 1 0 

 
1 1 0  1 2 

P4 1 1 
 

0 1 0  2 1 

P5 . 1 
 

1 0 1  1 2 
P6 1 1 

 
0 0 0  2 0 

P7 1 0 
 

1 1 0  1 2 

P8 1 1 
 

0 1 0  2 1 
P9 1 . 

 
1 . 1  1 2 

P10 1 1 
 

0 0 0  2 0 

P11 1 1 
 

1 0 .  2 1 
P12 1 0 

 
1 1 0  1 2 

P13 1 1 
 

0 1 0  2 1 

P14 0 1 
 

. 0 1  1 2 
P15 1 1 

 
0 0 0  2 0 

P16 . 0 
 

1 . 0  1 1 
P17 1 1 

 
0 1 0  2 1 

P18 1 1 
 

1 1 0  2 2 

P19 1 . 
 

1 0 0  1 1 
P20 1 0   1 1 0  1 2 
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Table 3. Missing Data Due to Test Design from a CAT Test with Test Length = 5 out of Item Bank Size= 30 and  

               Number of Person = 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Item    

 Sub-content 1  Sub-content 2  Sub-Total1 Sub-Total2 

Person I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12  II1 II2 II3 II4 II5 II6 II7 II8 II9 II10 II11 II12 II13 II14 II15 II16 II17 II18  RS1 RS2 

P1                                1 0 1 1 0                      2 2 

P2   
           

 

            
1 1 0 1 0    2 1 

P3   
     

1 0 1 1 
 

0  

                 
   1 2 

P4   

         

1 

 

 0 0 1 0 

             

   2 1 

P5   
           

 

    
1 1 0 

 
1 0 

       
   2 2 

P6   
 

1 1 0 1 0 
     

 

                 
   2 0 

P7   
           

 

   
1 1 1 0 0 

         
   1 2 

P8   
          

1  0 1 1 0 
             

   2 1 

P9   
           

 

         
1 0 0 1 1 

   
   2 2 

P10   
 

1 
 

1 0 0 1 
    

 

                 
   2 0 

P11   
        

1 
 

1  0 1 0 
              

   2 1 

P12   
          

1  1 
 

0 1 0 
            

   1 2 

P13   
           

 

   
1 

 
1 0 1 0 

        
   2 1 

P14   

           

 

      

0 1 1 1 

 

0 

     

   2 2 

P15   1 0 1 0 0 

      

 

                 

   2 0 

P16   

       

1 1 0 

 

 1 

 

0 

              

   1 2 

P17   

           

 

 

1 1 

 

0 1 0 

          

   2 1 

P18   

           

 

    

1 1 

 

0 1 0 

       

   2 2 

P19   

      

1 1 

 

0 1  0 

                

   2 1 

P20                                            0 1 1 0   0        1 2 



 13  

 

Table 4. Missing Data (Due to Test Design) Sorted by Person Ability (from low to high) and Item Difficulty (from easy to hard) from  

                a CAT Test with Test Length = 5 out of Item Bank Size= 30 and Number of Person = 20 Based on Table 3 

 
 Item    

 Sub-content 1 +  Sub-content 2  Sub-Total1 Sub-Total2 

Person I1 I2 II3 I4 II14 I6 I7 I8 I12 II13 I11 I9 I10 I5 II15 II16 II17 II18 I3 II26 II27 II28 II29 II24 II25 II19 II20 II21 II22 II30  RS1 RS2 

P15 1  

 

0 1 0 0                   

     

                     2 0 

P6   1 1 0 1 0 

                       

   1 2 

P10   

 

1 

 

1 0 0 

                      

   0 2 

P4   

  

0 1 1 1 

 

0 

                    

   1 2 

P5   

    

1 0 1 1 0 

                   

   3 0 

P6   

      

1 

 

0 0 1 0 

                

   2 0 

P7   

       

1 1 0 

 

1 0 

               

   2 1 

P8   

          

1 0 1 1 0 

             

   2 1 

P9   

           

1 1 1 0 0 

            

   2 1 

P10   

            

1 0 0 1 1 

           

   1 2 

P11   

             

1 

 

1 0 1 0 

         

   1 2 

P12   

               

1 1 

 

0 1 0 

       

   3 0 

P13   

               

1 

 

1 0 1 0 

       

   2 1 

P14   

                

0 1 1 1 

 

0 

      

   1 2 

P15 

                 

1 1 0 

 

1 

 

0 

     

   1 2 

P16   

                 

1 1 

 

0 1 0 

     

   1 2 

P17   

                  

1 1 

 

0 1 0 

    

   3 0 

P18   

                   

1 1 

 

0 1 0 

   

   3 0 

P19   

                    

0 1 1 0 

 

0 

  

   2 0 

P20                                                 1 1 0 1 

 

0   3 0 
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Table 5.  Research Design 

 

Design 
Observation 

Level 
IRT Model 

No. Item 

in Bank 

Test 

Length 

Testlet 

Length 

Missing Rate (%) 
Missing 

Mechanism Item 
Item 

Response 

1 Item Rasch 100 100 25 0 0  

  2PL 100 100 25 0 0  

  Bifactor 100 100 25 0 0  

 Testlet Rasch 100 100 25 0 0  

  2PL 100 100 25 0 0  

  Bifactor 100 100 25 0 0  

         

2 Item Rasch 100 100 25 0 50 MCAR 

  2PL 100 100 25 0 50 MCAR 

  Bifactor 100 100 25 0 50 MCAR 

 Testlet Rasch 100 100 25 0 50 MCAR 

  2PL 100 100 25 0 50 MCAR 

  Bifactor 100 100 25 0 50 MCAR 

         

3 Item Rasch 100 40 10 60 0 MCAR 

  2PL 100 40 10 60 0 MCAR 

  Bifactor 100 40 10 60 0 MCAR 

 Testlet Rasch 100 40 10 60 0 MCAR 

  2PL 100 40 10 60 0 MCAR 

  Bifactor 100 40 10 60 0 MCAR 

         

4 Item Rasch 100 40 10 60 50 MCAR 

  2PL 100 40 10 60 50 MCAR 

  Bifactor 100 40 10 60 50 MCAR 

 Testlet Rasch 100 40 10 60 50 MCAR 

  2PL 100 40 10 60 50 MCAR 

  Bifactor 100 40 10 60 50 MCAR 

         

5 Item Rasch 100 40 10 0 60 MNAR 

  2PL 100 40 10 0 60 MNAR 

  Bifactor 100 40 10 0 60 MNAR 

 Testlet Rasch 100 40 10 0 60 MNAR 

  2PL 100 40 10 0 60 MNAR 

  Bifactor 100 40 10 0 60 MNAR 

 

Table 6.  Parameter Distributions of Models 

 

Model  g k aj ajg ajk bj 
Sample 

Size 

Rasch N(0,1)      N(0,1) 10000 

2PL N(0,1)   Log(N(0,1))   N(0,1) 10000 

Bifactor  N(0,1) N(0,1)  Log(N(0,1)) Fixed values  10000 
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Table 7.  Summary of Goodness-of-Fit Indexes of Tests across Observation Level, Models, and Test Designs
*
 

 
          Data Model        

    Rasch    2PL    Bifactor  

Observation 

Level 
Calibration 

Model 
GOF 

       Design        

1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

Item Rasch p-Value           0.02 0.04 0.04 0.20 NC  0.00 0.00 0.00 0.00 NC  0.00 0.00 0.00 0.00 NC 

  CFI 1.00 1.00 1.00 1.00 NC  0.49 0.65 0.592 0.65 NC  0.66 0.80 0.73 0.80 NC 

  TLI 1.00 1.00 1.00 1.00 NC  0.68 0.69 0.664 0.67 NC  0.82 0.83 0.80 0.81 NC 

  RMSEA 0.00 0.00 0.00 0.00 NC  0.13 0.07 0.129 0.06 NC  0.13 0.06 0.13 0.06 NC 

  WRMR 1.01 1.01 1.01 0.99 NC  12.73 6.45 12.41 6.30 NC  12.73 6.40 12.29 6.14 NC 

 2PL p-Value           0.71 0.01 0.64 0.43 NC  0.00 0.26 0.00 0.16 NC  0.00 0.00 0.00 0.00 NC 

  CFI 1.00 1.00 1.00 1.00 NC  1.00 1.00 1.00 1.00 NC  0.78 0.92 0.88 0.94 NC 

  TLI 1.00 1.00 1.00 1.00 NC  1.00 1.00 1.00 1.00 NC  0.95 0.96 0.94 0.95 NC 

  RMSEA 0.00 0.00 0.00 0.00 NC  0.01 0.00 0.01 0.00 NC  0.07 0.03 0.07 0.03 NC 

  WRMR 0.85 0.94 0.82 0.89 NC  0.00 0.92 0.93 0.91 NC  5.91 3.08 5.70 2.97 NC 

 Bifactor p-Value           0.00 0.00 0.00 0.00 NC  0.00 0.00 0.00 0.00 NC  0.00 0.00 0.00 0.00 NC 

  CFI 0.90 0.97 0.85 0.94 NC  0.99 1.00 0.95 0.98 NC  0.82 0.94 0.85 0.92 NC 

  TLI 0.98 0.98 0.95 0.95 NC  1.00 1.00 0.98 0.98 NC  0.96 0.97 0.92 0.933 NC 

  RMSEA 0.02 0.01 0.04 0.02 NC  0.01 0.00 0.04 0.02 NC  0.06 0.03 0.08 0.04 NC 

  WRMR 1.96 1.30 3.1 1.79 NC  1.14 0.97 2.96 1.62 NC  5.18 2.71 6.46 3.31 NC 

                    

  p-Value           0.75 0.45 0.00 0.11 0.00  0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.02 0.00 

Testlet Rasch CFI 1.00 1.00 1.00 1.00 0.93  1.00 1.00 1.00 1.00 0.94  0.99 0.99 0.99 1.00 1.00 

  TLI 1.00 1.00 1.00 1.00 0.80  1.00 1.00 1.00 1.00 0.81  0.96 0.98 0.98 1.00 0.99 

  RMSEA 0.00 0.00 0.02 0.01 0.16  0.05 0.01 0.03 0.00 0.20  0.17 0.07 0.09 0.02 0.04 

  SRMR 0.00 0.00 0.00 0.00 0.08  0.00 0.00 0.01 0.00 0.10  0.02 0.01 0.02 0.01 0.01 

  p-Value           0.75 0.45 0.11 0.02 0.00  0.00 0.00 0.00 0.98 0.00  0.00 0.00 0.00 0.02 0.00 

 2PL CFI 1.00 1.00 1.00 1.00 0.93  1.00 1.00 1.00 1.00 0.94  0.99 0.99 0.99 1.00 1.00 

  TLI 1.00 1.00 1.00 1.00 0.80  1.00 1.00 1.00 1.00 0.81  0.96 0.98 0.98 1.00 0.99 

  RMSEA 0.00 0.00 0.02 0.01 0.16  0.05 0.01 0.03 0.00 0.20  0.17 0.07 0.09 0.02 0.04 

  SRMR 0.00 0.00 0.00 0.00 0.08  0.00 0.00 0.01 0.00 0.10  0.02 0.01 0.02 0.01 0.01 

  p-Value           0.75 0.45 0.00 0.11 0.00  0.00 0.20 0.00 0.04 38.55  0.00 0.00 0.00 0.00 0.00 

 Bifactor CFI 1.00 1.00 1.00 1.00 0.93  1.00 1.00 1.00 1.00 1.00  0.99 0.99 0.99 0.99 1.00 

  TLI 1.00 1.00 1.00 1.00 0.80  1.00 1.00 1.00 1.00 0.99  0.96 0.98 0.98 1.00 0.99 

  RMSEA 0.00 0.00 0.02 0.01 0.16  0.05 0.01 0.03 0.00 0.04  0.17 0.07 0.09 0.02 0.04 

  SRMR 0.00 0.00 0.00 0.00 0.08  0.00 0.00 0.01 0.00 0.01  0.02 0.01 0.02 0.01 0.01 

*Notes: NC represents no converge 



 16  

 

Table 8.  Patterns of Data Model fit Based on Different Sets of Fit Criteria across Observation Level, Models, and Test Designs

 

 

   Criteria Set One

  Criteria Set Two


 

        Data Model            Data Model      

   Rasch 2PL Bifactor  Rasch 2PL Bifactor 

Observation 

Level 
Calibration 

Model 
GOF 

     Design            Design      

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5  1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Item Rasch p-Value                                          

  CFI Y Y Y Y N N N N N N N N N N N  Y Y Y Y N N N N N N N N N N N 

  TLI Y Y Y Y N N N N N N N N N N N  Y Y Y Y N N N N N N N N N N N 

  RMSEA Y Y Y Y N N N N N N N N N N N  Y Y Y Y N N Y N Y N N Y N Y N 

  WRMR Y Y Y Y N N N N N N N N N N N  Y Y Y Y N N N N N N N N N N N 

 2PL p-Value                                          

  CFI Y Y Y Y N Y Y Y Y N N N N N N  N Y Y Y N Y Y Y Y N N Y N Y N 

  TLI Y Y Y Y N Y Y Y Y N N Y N Y N  Y Y Y Y N Y Y Y Y N Y Y Y Y N 

  RMSEA Y Y Y Y N Y Y Y Y N N Y N Y N  Y Y Y Y N Y Y Y Y N Y Y Y Y N 

  WRMR Y Y Y Y N Y Y Y Y N N N N N N  Y Y Y Y N Y Y Y Y N N N N N N 

 Bifactor p-Value                                          

  CFI N Y N N N Y Y Y Y N N N N N N  N Y N Y N Y Y Y Y N N Y N Y N 

  TLI Y Y N N N Y Y Y Y N N Y N N N  Y Y Y Y N Y Y Y Y N Y Y Y Y N 

  RMSEA Y Y Y Y N Y Y Y Y N N Y N Y N  Y Y Y Y N Y Y Y Y N Y Y Y Y N 

  WRMR N N N N N N Y N N N N N N N N  N N N N N N Y N N N N N N N N 

                                  

Testlet Rasch p-Value                                          

  CFI Y Y Y Y N Y Y Y Y N Y Y Y Y Y  Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

  TLI Y Y Y Y N Y Y Y Y N Y Y Y Y Y  Y Y Y Y N Y Y Y Y Y Y Y Y Y Y 

  RMSEA Y Y Y Y N Y Y Y Y N N N N Y Y  Y Y Y Y N Y Y Y Y Y N Y Y Y Y 

  SRMR Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

 2PL p-Value                                          

  CFI Y Y Y Y N Y Y Y Y N Y Y Y Y Y  Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

  TLI Y Y Y Y N Y Y Y Y N Y Y Y Y Y  Y Y Y Y N Y Y Y Y N Y Y Y Y Y 

  RMSEA Y Y Y Y N Y Y Y Y N N N N Y Y  Y Y Y Y N Y Y Y Y N N Y Y Y Y 

  SRMR Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

 Bifactor p-Value                                          

  CFI Y Y Y Y N Y Y Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

  TLI Y Y Y Y N Y Y Y Y Y Y Y Y Y Y  Y Y Y Y N Y Y Y Y Y Y Y Y Y Y 

  RMSEA Y Y Y Y N Y Y Y Y Y N N N Y Y  Y Y Y Y N Y Y Y Y Y N Y Y Y Y 

  SRMR Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y  Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

Notes: 


Y represents fit; N represent not-fit. 

: Criteria set one includes CFI > 0.95, TLI > 0.95, RMSEA < 0.06, SRMR < 0.08, and WRMR<1.00. 


: Criteria set two includes CFI > 0.90, TLI > 0.90, RMSEA < 0.10, SRMR < 0.10, and WRMR<1.00. 
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Design-1, Person: No Missing 

                 Item: No Missing 

                 Response: No Missing 

 

 
                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

 
Design-2, Person: No Missing 

                 Item: No Missing 

                 Response: Missing MCAR 

 

 

 
                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

 
Design-3,  Person: No Missing  

                  Item: Missing MCAR 

                  Response: No Missing                                       

 

 

Figure 1. Designs of Missing Data 

 

 

 

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

 
Design-4,  Person: No Missing 

                  Item: Missing MCAR 

                  Response: Missing MCAR 

 

 
                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

 
Design-5, Person-Sorted: No Missing                     

                 Item-Sorted:  No Missing                                   

                 Response: Missing MNAR 
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Figure 2.  A Single Factor Model with Continuous Observed Variables 
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Figure 3.  A Bifactor Model with Continuous Observed Variables 
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Figure 4. Relationship between y and y
*
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Figure 5.  Rasch Model with Dichotomous Observed Variables 
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Figure 6.  2PL Model with Dichotomous Observed Variables 
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Figure 7.  IRT-Bifactor Model with Dichotomous Observed Variables 
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