Linking Study Report: Predicting Performance on the Pennsylvania System of School Assessment (PSSA) based on NWEA MAP Growth Scores

June 2021

NWEA Psychometric Solutions

Linking Study Updates

Date	Description
2016-02	Initial linking study conducted for Pennsylvania in ELA and mathematics Grades 3–8 using Spring 2015 data.
2017-02	Updated the report to reflect the new NWEA branding.
2018-01-24	Corrected the PSSA Mathematics cut scores.
2021-06-04	Incorporated the new 2020 MAP Growth norms using Spring 2019 data for ELA and mathematics Grades 3–8. Not enough data available to include science.

Table of Contents

Executive Summary	5
1. Introduction	8
1.1. Purpose of the Study	8
1.2. Assessment Overview	8
2. Methods	9
2.1. Data Collection	
2.2. Post-Stratification Weighting	9
2.3. MAP Growth Cut Scores	9
2.4. Classification Accuracy	10
2.5. Proficiency Projection	11
3. Results	12
3.1. Study Sample	12
3.2. Descriptive Statistics	
3.3. MAP Growth Cut Scores	15
3.4. Classification Accuracy	18
3.5. Proficiency Projection	18
4. References	27
List of Tables	
Table 2.1. Description of Classification Accuracy Summary Statistics	11
Table 3.1. Linking Study Sample Demographics (Unweighted)	12
Table 3.2. Spring 2019 PSSA Student Population Demographics	13
Table 3.3. Linking Study Sample Demographics (Weighted)	14
Table 3.4. Descriptive Statistics of Test Scores	15
Table 3.5. MAP Growth Cut Scores—ELA/Reading	16
Table 3.6. MAP Growth Cut Scores—Mathematics	17
Table 3.7. Classification Accuracy Results	
Table 3.8. Proficiency Projection based on RIT Scores—ELA/Reading	19
Table 3.9. Proficiency Projection based on RIT Scores—Mathematics	23

Executive Summary

To predict student achievement on the Pennsylvania System of School Assessment (PSSA) in Grades 3–8 English Language Arts (ELA) and Mathematics, NWEA® conducted a linking study using Spring 2019 data to derive Rasch Unit (RIT) cut scores on the MAP® Growth™ assessments that correspond to the PSSA performance levels. Educators can use this information to identify students at risk of not meeting state proficiency standards early in the year and provide tailored educational interventions.¹ The linking study has been updated since the previous version from January 2018 to incorporate the new 2020 NWEA MAP Growth norms (Thum & Kuhfeld, 2020) and update the study using more recent data from Spring 2019.

Table E.1 presents the PSSA *Proficient* performance level cut scores and the corresponding MAP Growth RIT cut scores that allow teachers to identify students who are on track for proficiency on the state summative test and those who are not. For example, the *Proficient* cut score on the PSSA Grade 3 ELA test is 1000. A Grade 3 student with a MAP Growth Reading RIT score of 183 in the fall is likely to meet proficiency on the PSSA ELA test in the spring, whereas a Grade 3 student with a MAP Growth Reading RIT score lower than 183 in the fall is in jeopardy of not meeting proficiency. MAP Growth cut scores for Grade 2 are also provided so educators can track early learners' progress toward proficiency on the PSSA test by Grade 3. These cut scores were derived based on the Grade 3 cuts and the 2020 NWEA growth norms for the adjacent grade (i.e., Grades 2 to 3).

Table E.1. MAP Growth Cut Scores for PSSA Proficiency

		Proficient Cut Scores by Grade								
Assessm	nent	2	3	4	5	6	7	8		
ELA/Reading										
PSS	SA Spring	_	1000	1000	1000	1000	1000	1000		
	Fall	168	183	192	201	206	213	217		
MAP Growth	Winter	177	191	198	206	210	216	220		
	Spring	182	194	201	208	212	217	221		
Mathematics										
PSS	SA Spring	_	1000	1000	1000	1000	1000	1000		
	Fall	175	188	205	214	223	231	241		
MAP Growth	Winter	184	196	212	220	228	235	244		
	Spring	189	201	216	224	231	238	246		

Please note that the results in this report may differ from those found in the NWEA reporting system for individual districts. The typical growth scores from fall to spring or winter to spring used in this report are based on the default instructional weeks most encountered for each term (i.e., Weeks 4, 20, and 32 for fall, winter, and spring, respectively). However, instructional weeks often vary by district, so the cut scores in this report may differ slightly from the MAP Growth score reports that reflect the specific instructional weeks set by partners.

_

¹ This study provides MAP Growth cut scores that predict proficiency on the PSSA for Grades 2–8 only. They represent a higher level of achievement than universal screening cut scores designed to identify students with the most severe learning difficulties who may need intensive intervention. MAP Growth universal screening cut scores for Grades K–8 in ELA and mathematics are available in a separate report (He & Meyer, 2021).

E.1. Assessment Overview

The PSSA Grades 3–8 ELA and Mathematics tests are Pennsylvania's state summative assessments aligned to the Pennsylvania Core Standards. Based on their test scores, students are placed into one of four performance levels: *Below Basic*, *Basic*, *Proficient*, and *Advanced*. The *Proficient* cut score demarks the minimum level of achievement considered to be proficient for accountability purposes. MAP Growth tests are adaptive interim assessments aligned to state-specific content standards and administered in the fall, winter, and spring. Scores are reported on the RIT vertical scale with a range of 100–350.

E.2. Linking Methods

Based on scores from the Spring 2019 test administration, the equipercentile linking method was used to identify the spring MAP Growth scores that correspond to the spring PSSA performance level cut scores. Spring cuts for Grade 2 were derived based on the cuts for Grade 3 and the 2020 NWEA growth norms. MAP Growth fall and winter cut scores that predict proficiency on the spring PSSA test were then projected using the 2020 NWEA conditional growth norms that provide expected score gains across test administrations.

E.3. Student Sample

Only students who took both the MAP Growth and PSSA assessments in Spring 2019 were included in the study sample. Table E.2 presents the weighted number of Pennsylvania students from 13 districts and 60 schools who were included in the linking study. The linking study sample is voluntary and can only include student scores from partners who share their data. Also, not all students in a state take MAP Growth. The sample may therefore not represent the general student population as well as it should. To ensure that the linking study sample represents the state student population in terms of race, sex, and performance level distributions, weighting was applied to the sample (i.e., a statistical method that matches the distributions of the variables of interest to those of the target population). As a result, the RIT cuts derived from the study sample can be generalized to any student from the target population. All analyses in this study for Grades 3–8 were conducted based on the weighted sample.

Table E.2. Linking Study Sample

	#Stud	dents
Grade	ELA/Reading	Mathematics
3	2,982	2,690
4	3,262	3,033
5	3,300	2,924
6	2,913	2,719
7	2,712	2,723
8	2,618	2,671

E.4. Test Score Relationships

Correlations between MAP Growth RIT scores and PSSA scores range from 0.79 to 0.84 across content areas, as shown in Figure E.1. These values indicate a strong relationship among the scores, which is important validity evidence for the claim that MAP Growth scores are good predictors of performance on the PSSA assessments.

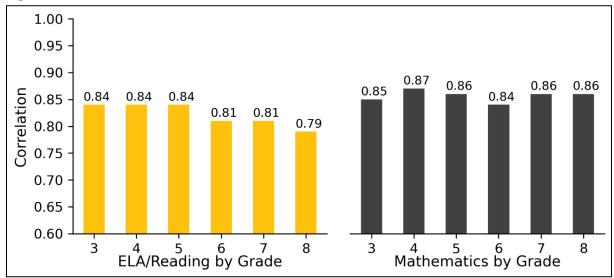


Figure E.1. Correlations between MAP Growth and PSSA Test Scores

E.5. Accuracy of MAP Growth Classifications

Figure E.2 presents the classification accuracy statistics that show the proportion of students correctly classified by their RIT scores as proficient or not proficient on the PSSA tests. For example, the MAP Growth Reading Grade 3 Proficient cut score has a 0.86 accuracy rate, meaning it accurately classified student achievement on the state test for 86% of the sample. The results range from 0.82 to 0.91 across content areas, indicating that RIT scores have a high accuracy rate of identifying student proficiency on the PSSA tests.

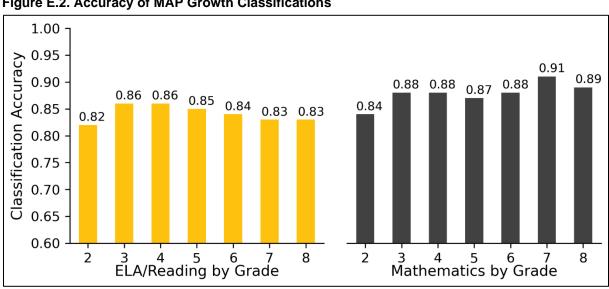


Figure E.2. Accuracy of MAP Growth Classifications

1. Introduction

1.1. Purpose of the Study

NWEA[®] is committed to providing partners with useful tools to help make inferences about student learning from MAP[®] Growth[™] test scores. One important use of MAP Growth results is to predict a student's performance on the state summative assessment at different times throughout the year. This allows educators and parents to determine if a student is on track in their learning to meet state standards by the end of the year or, given a student's learning profile, is on track to obtain rigorous, realistic growth in their content knowledge and skills.

This document presents results from a linking study conducted by NWEA in June 2021 to statistically connect the scores of the Pennsylvania System of School Assessment (PSSA) Grades 3–8 English Language Arts (ELA) and Mathematics assessments with Rasch Unit (RIT) scores from the MAP Growth assessments taken during the Spring 2019 term. The linking study has been updated since the previous version from January 2018 to incorporate the new 2020 NWEA MAP Growth norms (Thum & Kuhfeld, 2020) and update the study using more recent data from Spring 2019. MAP Growth cut scores are also included for Grade 2 so educators can track early learners' progress toward proficiency on the PSSA test by Grade 3. This report presents the following results:

- 1. Student sample demographics
- 2. Descriptive statistics of test scores
- 3. MAP Growth cut scores that correspond to the PSSA performance levels using the equipercentile linking procedure for the spring results and the 2020 norms for the fall and winter results
- 4. Classification accuracy statistics to determine the degree to which MAP Growth accurately predicts student proficiency status on the PSSA tests
- 5. The probability of achieving grade-level proficiency on the PSSA assessment based on MAP Growth RIT scores from fall, winter, and spring using the 2020 norms

1.2. Assessment Overview

The PSSA Grades 3–8 ELA and Mathematics summative assessments are aligned to the Pennsylvania Core Standards. Each assessment has three cut scores (i.e., the minimum score a student must get on a test to be placed in a certain performance level) that distinguish between the following performance levels: *Below Basic, Basic, Proficient*, and *Advanced*. The *Proficient* cut score demarks the minimum level of performance considered to be proficient for accountability purposes.

MAP Growth interim assessments from NWEA are computer adaptive and aligned to state-specific content standards. Scores are reported on the RIT vertical scale with a range of 100–350. Each content area has its own scale. To aid the interpretation of scores, NWEA periodically conducts norming studies of student and school performance on MAP Growth. Achievement status norms show how well a student performed on the MAP Growth test compared to students in the norming group by associating the student's performance on the MAP Growth test, expressed as a RIT score, with a percentile ranking. Growth norms provide expected score gains across test administrations (e.g., the relative evaluation of a student's growth from fall to spring). The most recent norms study was conducted in 2020 (Thum & Kuhfeld, 2020).

2. Methods

2.1. Data Collection

This linking study is based on data from the Spring 2019 administrations of the MAP Growth and PSSA assessments. NWEA recruited Pennsylvania districts to participate in the study by sharing their student and score data for the target term. Districts also gave NWEA permission to access students' associated MAP Growth scores from the NWEA in-house database. Once state score information was received by NWEA, each student's state testing record was matched to their MAP Growth score by using the student's first and last names, date of birth, student ID, and other available identifying information. Only students who took both the MAP Growth and PSSA assessments in Spring 2019 were included in the study sample.

2.2. Post-Stratification Weighting

Post-stratification weights were applied to the calculations to ensure that the linking study sample represented the state population in terms of race, sex, and performance level. These variables were selected because they are correlated with the student's academic achievement within this study and are often provided in the data for the state population. The weighted sample matches the target population as closely as possible on the key demographics and test score characteristics. Specifically, a raking procedure was used to calculate the post-stratification weights and improve the representativeness of the sample. Raking uses iterative procedures to obtain weights that match sample marginal distributions to known population margins. The following steps were taken during this process:

- Calculate marginal distributions of race, sex, and performance level for the sample and population.
- Calculate post-stratification weights with the rake function from the survey package in R (Lumley, 2019).
- Trim the weight if it is not in the range of 0.3 to 3.0.
- Apply the weights to the sample before conducting the linking study analyses.

2.3. MAP Growth Cut Scores

The equipercentile linking method (Kolen & Brennan, 2004) was used to identify the spring MAP Growth RIT scores that correspond to the spring PSSA performance level cut scores. Spring cuts for Grade 2 were derived based on the cuts for Grade 3 and the 2020 NWEA growth norms. RIT fall and winter cut scores that predict proficiency on the spring PSSA test were then projected using the 2020 growth norms. Percentile ranks are also provided that show how a nationally representative sample of students in the same grade scored on MAP Growth for each administration, which is an important interpretation of RIT scores. This is useful for understanding (1) how student scores compared to peers nationwide and (2) the relative rigor of a state's performance level designations for its summative assessment.

The MAP Growth spring cut scores for Grades 3–8 could be calculated using the equipercentile linking method because that data are directly connected to the PSSA spring data used in the study. The equipercentile linking procedure matches scores on the two scales that have the same percentile rank (i.e., the proportion of tests at or below each score). For example, let x represent a score on Test X (e.g., PSSA). Its equipercentile equivalent score on Test Y (e.g., MAP Growth), $e_y(x)$, can be obtained through a cumulative-distribution-based linking function defined in Equation 1:

$$e_{y}(x) = G^{-1}[P(x)]$$
 (1)

where $e_y(x)$ is the equipercentile equivalent of score x on PSSA on the scale of MAP Growth, P(x) is the percentile rank of a given score on PSSA, and G^{-1} is the inverse of the percentile rank function for MAP Growth that indicates the score on MAP Growth corresponding to a given percentile. Polynomial loglinear pre-smoothing was applied to reduce irregularities of the score distributions and equipercentile linking curve.

The MAP Growth conditional growth norms provide students' expected score gains across terms, such as growth from fall or winter to spring within the same grade or from spring of a lower grade to the spring of the adjacent higher grade. This information can be used to calculate the fall and winter cut scores for Grades 3–8 and the fall, winter, and spring cut scores for Grade 2. Equation 2 was used to determine the previous term's or grade's MAP Growth score needed to reach the spring cut score, considering the expected growth associated with the previous RIT score:

$$RIT_{PredSpring} = RIT_{previous} + g$$
 (2)

where:

- *RIT*_{PredSpring} is the predicted MAP Growth spring score.
- *RIT*_{previous} is the previous term's or grade's RIT score.
- g is the expected growth from the previous RIT (e.g., fall or winter) to the spring RIT.

To derive the spring cut scores for Grade 2, the growth score from spring of one year to the next was used (i.e., the growth score from spring Grade 2 to spring Grade 3). The calculation of fall and winter cuts for Grade 2 followed the same process as the other grades. For example, the growth score from fall to spring in Grade 2 was used to calculate the fall cuts for Grade 2.

2.4. Classification Accuracy

The degree to which MAP Growth predicts student proficiency status on the PSSA tests can be described using classification accuracy statistics based on the MAP Growth spring RIT cut scores that show the proportion of students correctly classified by their RIT scores as proficient (*Proficient* or *Advanced*) or not proficient (*Below Basic* or *Basic*). Table 2.1 describes the classification accuracy statistics provided in this report (Pommerich et al., 2004). The results are based on the Spring 2019 MAP Growth and PSSA data for the *Proficient* cut score.

Pennsylvania students do not begin taking the PSSA assessment until Grade 3, so longitudinal data were collected for the Grade 3 cohort to link the PSSA assessment to MAP Growth for Grade 2 to calculate the classification accuracy statistics. To accomplish this, 2018–2019 PSSA Grade 3 results were linked to MAP Growth data from Grade 3 students in 2018–2019 and Grade 2 students in 2017–2018. In this way, the data came from the same cohort of students beginning when they were in Grade 2 and continuing through Grade 3.

Table 2.1. Description of Classification Accuracy Summary Statistics

Statistic	Description*	Interpretation
Overall Classification Accuracy Rate	(TP + TN) / (total sample size)	Proportion of the study sample whose proficiency classification on the state test was correctly predicted by MAP Growth cut scores
False Negative (FN) Rate	FN / (FN + TP)	Proportion of not-proficient students identified by MAP Growth in those observed as proficient on the state test
False Positive (FP) Rate	FP / (FP + TN)	Proportion of proficient students identified by MAP Growth in those observed as not proficient on the state test
Sensitivity	TP / (TP + FN)	Proportion of proficient students identified by MAP Growth in those observed as such on the state test
Specificity	TN / (TN + FP)	Proportion of not-proficient students identified by MAP Growth in those observed as such on the state test
Precision	TP / (TP + FP)	Proportion of observed proficient students on the state test in those identified as such by the MAP Growth test
Area Under the Curve (AUC)	Area under the receiver operating characteristics (ROC) curve	How well MAP Growth cut scores separate the study sample into proficiency categories that match those from the state test cut scores. An AUC at or above 0.80 is considered "good" accuracy.

^{*}FP = false positives. FN = false negatives. TP = true positives. TN = true negatives.

2.5. Proficiency Projection

In addition to calculating the MAP Growth fall and winter cut scores, the MAP Growth conditional growth norms data were also used to calculate the probability of reaching proficiency on the PSSA test based on a student's RIT scores from fall, winter, and spring. Equation 3 was used to calculate the probability of a student achieving *Proficient* performance on the PSSA test based on their fall or winter RIT score:

$$Pr(Achieving\ Proficient\ in\ spring\ |\ starting\ RIT) = \Phi\left(\frac{RIT_{previous} + g - RIT_{SpringCut}}{SD}\right)$$
 (3)

where:

- Φ is a standardized normal cumulative distribution.
- RIT_{previous} is the student's RIT score in fall or winter (or in spring of Grade 2).
- g is the expected growth from the previous RIT (e.g., fall or winter) to the spring RIT.
- *RIT*_{SpringCut} is the MAP Growth *Proficient* cut score for spring. For Grade 2, this is the Grade 3 cut score for spring.
- SD is the conditional standard deviation of the expected growth, g.

Equation 4 was used to estimate the probability of a student achieving *Proficient* performance on the PSSA test based on their spring RIT score (RIT_{Spring}):

$$Pr(Achieving\ Proficient\ in\ spring\ |\ spring\ RIT) = \Phi\left(\frac{RIT_{Spring} - RIT_{SpringCut}}{SE}\right)$$
 (4)

where SE is the standard error of measurement for MAP Growth.

3. Results

3.1. Study Sample

Only students who took both the MAP Growth and PSSA assessments in Spring 2019 were included in the study sample. Data used in this study were collected from 13 districts and 60 schools in Pennsylvania. Table 3.1 presents the demographic distributions of race, sex, and performance level in the original unweighted study sample. Table 3.2 presents the distributions of the student population that took the Spring 2019 PSSA tests. Since the unweighted data are different from the general PSSA population, post-stratification weights were applied to the linking study sample to improve its representativeness. Table 3.3 presents the demographic distributions of the sample after weighting, which are almost identical to the PSSA student population distributions. The analyses in this study were therefore conducted based on the weighted sample.

Table 3.1. Linking Study Sample Demographics (Unweighted)

Linking Study Sample (Unweighted)										
			%	Students	by Grade					
Demograp	hic Subgroup	3	4	5	6	7	8			
ELA/Reading										
	Total N	2,982	3,262	3,300	2,913	2,712	2,618			
	AI/AN	0.4	0.3	0.2	0.2	0.3	0.1			
	Asian/NH/PI	7.7	7.5	8.0	7.3	7.1	6.0			
Door*	Black	38.3	38.7	41.7	43.0	48.8	49.9			
Race*	Hispanic	7.7	8.7	7.0	6.8	7.2	5.8			
	Multi-Race	4.4	3.7	3.5	3.0	2.7	3.1			
	White	41.6	41.0	39.7	39.8	33.8	35.1			
Sex	Female	48.6	47.2	47.9	49.2	50.0	49.6			
Sex	Male	51.4	52.8	52.1	50.8	50.0	50.4			
	Below Basic	14.3	13.2	12.4	7.6	2.8	13.4			
Performance	Basic	32.1	31.2	36.3	37.2	45.8	38.0			
Level	Proficient	42.3	33.5	39.1	39.5	42.5	37.9			
	Advanced	11.3	22.0	12.2	15.7	9.0	10.7			
Mathematics										
	Total N	2,690	3,033	2,924	2,719	2,723	2,671			
	AI/AN	0.3	0.3	0.2	0.2	0.3	0.1			
	Asian/NH/PI	6.4	6.7	7.3	6.8	7.4	6.2			
Race*	Black	41.3	41.8	45.3	45.6	49.6	50.5			
Race	Hispanic	7.6	8.3	7.1	6.3	7.3	5.8			
	Multi-Race	3.8	3.6	3.3	2.5	2.4	2.9			
	White	40.5	39.2	36.8	38.7	32.9	34.5			
Cov	Female	48.5	47.7	48.2	49.3	49.9	50.0			
Sex	Male	51.5	52.3	51.8	50.7	50.1	50.0			
	Below Basic	31.8	35.3	32.2	36.8	49.5	49.6			
Performance	Basic	24.1	27.3	35.8	37.7	26.3	28.8			
Level	Proficient	25.2	23.5	22.9	16.4	17.3	16.2			
	Advanced	18.9	13.9	9.0	9.2	6.9	5.4			

^{*}AI/AN = American Indian/Alaska Native. NH/PI = Native Hawaiian/Pacific Islander.

Table 3.2. Spring 2019 PSSA Student Population Demographics

	Spring 2019 PSSA Population											
				%Students	s by Grade	•						
Demograp	hic Subgroup	3	4	5	6	7	8					
ELA												
	Total N	120,564	123,172	127,550	127,560	125,998	123,503					
	AI/AN	0.1	0.1	0.2	0.2	0.1	0.1					
	Asian/NH/PI	4.2	4.2	4.0	4.1	4.1	4.1					
Race*	Black	14.8	15.0	14.9	14.6	14.2	14.1					
	Hispanic	12.6	12.7	12.3	12.3	11.9	11.7					
	Multi-Race	5.1	4.7	4.6	4.4	4.0	3.7					
	White	63.1	63.3	63.9	64.4	65.6	66.2					
Sov	Female	48.9	49.1	48.9	48.9	48.8	48.6					
Sex	Male	51.1	50.9	51.1	51.1	51.2	51.4					
	Below Basic	11.5	10.3	9.6	5.7	2.6	11.9					
Performance	Basic	26.6	26.1	31.8	31.3	36.9	30.2					
Level	Proficient	45.4	36.3	42.7	42.3	45.6	41.9					
	Advanced	16.5	27.3	15.8	20.8	14.9	16.0					
Mathematics												
	Total N	120,604	123,286	127,592	127,496	125,808	123,186					
	AI/AN	0.1	0.1	0.2	0.2	0.1	0.1					
	Asian/NH/PI	4.2	4.2	4.0	4.2	4.1	4.1					
Race*	Black	14.8	15.0	14.9	14.6	14.2	14.1					
Race	Hispanic	12.6	12.7	12.3	12.3	11.9	11.7					
	Multi-Race	5.1	4.7	4.6	4.4	4.0	3.6					
	White	63.0	63.3	63.9	64.4	65.6	66.2					
Sov	Female	48.9	49.1	48.8	48.8	48.8	48.6					
Sex	Male	51.1	50.9	51.2	51.2	51.2	51.4					
	Below Basic	22.4	26.1	23.3	25.9	35.8	39.6					
Performance	Basic	21.6	27.7	33.7	35.1	26.0	28.2					
Level	Proficient	29.3	27.2	27.2	23.2	24.3	22.3					
	Advanced	26.7	19.0	15.8	15.8	14.0	9.9					
		NII I/DI										

^{*}Al/AN = American Indian/Alaska Native. NH/PI = Native Hawaiian/Pacific Islander.

Table 3.3. Linking Study Sample Demographics (Weighted)

Linking Study Sample (Weighted)										
			%	Students	by Grade					
Demograp	hic Subgroup	3	4	5	6	7	8			
ELA/Reading										
	Total N	2,982	3,262	3,300	2,913	2,712	2,618			
	AI/AN	0.1	0.1	0.2	0.2	0.1	0.2			
	Asian/NH/PI	4.2	4.2	4.0	4.1	4.1	4.1			
Door*	Black	14.8	15.0	14.9	14.6	14.2	14.1			
Race*	Hispanic	12.6	12.7	12.3	12.3	11.9	11.7			
	Multi-Race	5.1	4.7	4.6	4.4	4.0	3.7			
	White	63.1	63.3	64.0	64.4	65.6	66.2			
0	Female	48.9	49.1	48.8	48.9	48.8	48.6			
Sex	Male	51.1	50.9	51.2	51.1	51.2	51.4			
	Below Basic	11.5	10.3	9.6	5.7	2.6	11.9			
Performance	Basic	26.6	26.1	31.8	31.3	36.9	30.2			
Level	Proficient	45.4	36.3	42.7	42.3	45.6	41.9			
	Advanced	16.5	27.3	15.8	20.8	14.9	16.0			
Mathematics										
	Total N	2,690	3,033	2,924	2,719	2,723	2,671			
	AI/AN	0.1	0.1	0.2	0.2	0.1	0.1			
	Asian/NH/PI	4.2	4.2	4.0	4.2	4.1	4.1			
D*	Black	14.8	15.0	14.9	14.6	14.2	14.1			
Race*	Hispanic	12.6	12.7	12.3	12.3	11.9	11.7			
	Multi-Race	5.1	4.7	4.6	4.4	4.0	3.6			
	White	63.1	63.3	63.9	64.4	65.6	66.2			
Cov	Female	48.9	49.1	48.8	48.9	48.8	48.6			
Sex	Male	51.1	50.9	51.2	51.1	51.2	51.4			
	Below Basic	22.4	26.1	23.3	25.9	35.8	39.6			
Performance	Basic	21.6	27.7	33.7	35.1	26.0	28.2			
Level	Proficient	29.3	27.2	27.2	23.2	24.3	22.3			
	Advanced	26.7	19.0	15.8	15.8	13.9	9.9			
* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	an Indian/Alaska Nativ	NILL/DI	NI=45 11=-		:¢: - 1-11-	_				

^{*}AI/AN = American Indian/Alaska Native. NH/PI = Native Hawaiian/Pacific Islander.

3.2. Descriptive Statistics

Table 3.4 presents descriptive statistics of the MAP Growth and PSSA test scores from Spring 2019, including the correlation coefficient (*r*) between them. The coefficients between the scores range from 0.79 to 0.84 for ELA/reading and 0.84 to 0.87 for mathematics. These values indicate a strong relationship among the scores, which is important validity evidence for the claim that MAP Growth scores are good predictors of performance on the PSSA assessments.

Table 3.4. Descriptive Statistics of Test Scores

			PSSA*					MAP G	rowth*	
Grade	N	r	Mean	SD	Min.	Max.	Mean	SD	Min.	Max.
ELA/Reading										
3	2,982	0.84	1038.3	107.4	720	1544	197.5	17.1	142	237
4	3,262	0.84	1035.8	112.4	693	1511	204.4	17.2	137	253
5	3,300	0.84	1027.7	103.6	687	1445	210.3	17.0	142	250
6	2,913	0.81	1036.2	107.4	673	1562	215.1	16.2	151	259
7	2,712	0.81	1026.4	94.4	728	1386	219.3	16.3	149	260
8	2,618	0.79	1024.9	113.3	698	1565	222.2	16.6	149	262
Mathem	atics									
3	2,690	0.85	1025.0	123.2	648	1530	202.5	15.3	133	255
4	3,033	0.87	993.0	122.8	600	1532	212.5	17.3	146	261
5	2,924	0.86	988.6	112.6	698	1462	219.6	18.2	146	276
6	2,719	0.84	978.8	115.1	669	1500	224.1	19.1	149	276
7	2,723	0.86	964.6	116.5	663	1345	229.7	20.4	151	280
8	2,671	0.86	949.5	113.3	606	1470	234.3	21.6	147	300

^{*}SD = standard deviation. Min. = minimum. Max. = maximum.

3.3. MAP Growth Cut Scores

Table 3.5 and Table 3.6 present the PSSA scale score ranges and the corresponding MAP Growth RIT cut scores and percentile ranges by content area and grade. These tables can be used to predict a student's likely performance level on the PSSA spring assessment when MAP Growth is taken in the fall, winter, or spring. For example, a Grade 3 student who obtained a MAP Growth Reading RIT score of 183 in the fall is likely to achieve *Proficient* performance on the PSSA ELA test. A Grade 3 student who obtained a MAP Growth Reading RIT score of 194 in the spring is also likely to achieve *Proficient* performance on the PSSA assessment. The spring cut score is higher than the fall cut score because growth is expected between fall and spring as students receive more instruction during the school year.

Within this report, the cut scores for fall and winter are derived from the spring cuts and the typical growth scores from fall-to-spring or winter-to-spring. The typical growth scores are based on the default instructional weeks most encountered for each term (Weeks 4, 20, and 32 for fall, winter, and spring, respectively). Since instructional weeks often vary by district, the cut scores in this report may differ slightly from the MAP Growth score reports that reflect instructional weeks set by partners. If the actual instructional weeks deviate from the default ones, a student's projected performance level could be different from the generic projection presented in this document. Partners are therefore encouraged to use the projected performance level in students' score reports since they reflect the specific instructional weeks set by partners.

Table 3.5. MAP Growth Cut Scores—ELA/Reading

Grade Below Basic Basic Proficient Advanced		PSSA ELA											
4 600−886 887−999 1000−1106 ≥1107 5 600−892 893−999 1000−1138 ≥1139 6 600−874 875−999 1000−1114 ≥11130 7 600−844 845−999 1000−1129 ≥1130 MAP Growth Reading*	Grade	Belo	w Basic	Ва	asic	Prof	ficient	Adv	anced				
5 600-892 893-999 1000-1138 ≥1139 6 600-874 875-999 1000-1114 ≥1115 7 600-844 845-999 1000-1129 ≥1130 MAP Growth Reading* MAP Growth Reading* Below Basic Proficient Advanced Grade RIT Percentile RIT Percentile <td>3</td> <td>600</td> <td>)–904</td> <td>905</td> <td>-999</td> <td>1000</td> <td><u>–1142</u></td> <td>≥1</td> <td>143</td>	3	600)–904	905	- 999	1000	<u>–1142</u>	≥1	143				
6 600-874 875-999 1000-1114 ≥1115 7 600-844 845-999 1000-1129 ≥1130 MAP Growth Reading* MAP Growth Reading* Below Basic Basic Proficient Advanced Fall 2 100-143 1-2 144-167 3-38 168-194 39-92 195-350 93-99 3 100-161 1-6 162-182 7-40 183-205 41-87 206-350 88-99 4 100-168 1-4 169-191 5-38 192-208 39-76 209-350 77-99 5 100-177 1-4 178-200 5-41 201-222 42-86 223-350 87-99 6 100-179 1-2 180-205 3-39 206-224 40-81 225-350 82-99 8 100-195 1-9 196-216 10-47 217-234 48-83 235-350 84-99 <	4	600)–886	887–999		1000 –1106		≥1107					
7 600−844 845−999 1000−1129 ≥1130 MAP Growth Reading* MAP Growth Reading* Below Basic Basic Proficient Advarced Fall 2 100−143 1−2 144−167 3–38 168−194 39–92 195–350 93–99 3 100−161 1−6 162−182 7−40 183–205 41–87 206–350 88–99 4 100−168 1−4 169–191 5–38 192–208 39–76 209–350 77–99 5 100−177 1−4 178–200 5–41 201–222 42–86 223–350 87–99 6 100−179 1−2 180–205 3–39 206–224 40–81 225–350 82–99 7 100−182 1−2 183–212 3–46 213–233 47–87 234–350 88–99 8 100−195 1−9 196–216 10–47 217–234 48–83 235–350 87–99 8 <	5	600–892		893–999		1000	– 1138	≥1	139				
MAP Growth Reading* MAP Growth Reading* Below Basic Basic Proficient Advanced Fall 2 100-143 1-2 144-167 3-38 168-194 39-92 195-350 93-99 3 100-161 1-6 162-182 7-40 183-205 41-87 206-350 88-99 4 100-168 1-4 169-191 5-38 192-208 39-76 209-350 77-99 5 100-177 1-4 178-200 5-41 201-222 42-86 223-350 87-99 6 100-179 1-2 180-205 3-39 206-224 40-81 225-350 82-99 7 100-182 1-2 183-212 3-46 213-233 47-87 234-350 88-99 8 100-195 1-9 196-216 10-47 217-234 48-83 235-350 82-99 Winter 2	6	600)–874	875	-999	1000	– 1114	≥1	115				
MAP Growth Reading* Grade Below Basic Basic Proficient Advanced Fall 2 100-143 1-2 144-167 3-38 168-194 39-92 195-350 93-99 3 100-161 1-6 162-182 7-40 183-205 41-87 206-350 88-99 4 100-168 1-4 169-191 5-38 192-208 39-76 209-350 77-99 5 100-177 1-4 178-200 5-41 201-222 42-86 223-350 87-99 6 100-179 1-2 180-205 3-39 206-224 40-81 225-350 88-99 8 100-195 1-9 196-216 10-47 217-234 48-83 235-350 84-99 Winter 2 100-154 1-3 155-176 4-38 177-201 39-91 202-350 92-99 3 100-171 1-8 172-190 9-42	7	600)–844	845	-999	1000	– 1129	≥1	130				
Grade RIT Percentile RIT Percentile RIT Percentile RIT Percentile RIT Percentile RIT Percentile Fall 2 100-143 1-2 144-167 3-38 168-194 39-92 195-350 93-99 3 100-161 1-6 162-182 7-40 183-205 41-87 206-350 88-99 4 100-168 1-4 169-191 5-38 192-208 39-76 209-350 77-99 5 100-177 1-4 178-200 5-41 201-222 42-86 223-350 87-99 6 100-179 1-2 180-205 3-39 206-224 40-81 225-350 82-99 7 100-182 1-2 183-212 3-46 213-233 47-87 234-350 88-99 8 100-195 1-9 196-216 10-47 217-234 48-83 235-350 84-99 Winter	8	600)–885	886	- 999	1000	– 1129	≥1	130				
Grade RIT Percentile RIT Percentile RIT Percentile RIT Percentile Fall 2 100–143 1–2 144–167 3–38 168–194 39–92 195–350 93–99 3 100–161 1–6 162–182 7–40 183–205 41–87 206–350 88–99 4 100–168 1–4 169–191 5–38 192–208 39–76 209–350 77–99 5 100–177 1–4 178–200 5–41 201–222 42–86 223–350 87–99 6 100–179 1–2 180–205 3–39 206–224 40–81 225–350 82–99 7 100–182 1–2 183–212 3–46 213–233 47–87 234–350 88–99 8 100–195 1–9 196–216 10–47 217–234 48–83 235–350 84–99 Winter 2 100–154 1–3 155–176 4–38	MAP Growth Reading*												
Fall 2 100-143 1-2 144-167 3-38 168-194 39-92 195-350 93-99 3 100-161 1-6 162-182 7-40 183-205 41-87 206-350 88-99 4 100-168 1-4 169-191 5-38 192-208 39-76 209-350 77-99 5 100-177 1-4 178-200 5-41 201-222 42-86 223-350 87-99 6 100-179 1-2 180-205 3-39 206-224 40-81 225-350 82-99 7 100-182 1-2 183-212 3-46 213-233 47-87 234-350 88-99 8 100-195 1-9 196-216 10-47 217-234 48-83 235-350 84-99 Winter 2 100-154 1-3 155-176 4-38 177-201 39-91 202-350 92-99 3 100-171 1-8 172-197 6-38 <th></th> <th>Belov</th> <th>w Basic</th> <th>Ba</th> <th>asic</th> <th>Prof</th> <th>ficient</th> <th>Adv</th> <th>anced</th>		Belov	w Basic	Ba	asic	Prof	ficient	Adv	anced				
2 100-143 1-2 144-167 3-38 168-194 39-92 195-350 93-99 3 100-161 1-6 162-182 7-40 183-205 41-87 206-350 88-99 4 100-168 1-4 169-191 5-38 192-208 39-76 209-350 77-99 5 100-177 1-4 178-200 5-41 201-222 42-86 223-350 87-99 6 100-179 1-2 180-205 3-39 206-224 40-81 225-350 82-99 7 100-182 1-2 183-212 3-46 213-233 47-87 234-350 88-99 8 100-195 1-9 196-216 10-47 217-234 48-83 235-350 84-99 Winter 2 100-154 1-3 155-176 4-38 177-201 39-91 202-350 92-99 3 100-176 1-5 177-197 6-38 198-213 39-75	Grade	RIT	Percentile	RIT	Percentile	RIT	Percentile	RIT	Percentile				
3 100-161 1-6 162-182 7-40 183-205 41-87 206-350 88-99 4 100-168 1-4 169-191 5-38 192-208 39-76 209-350 77-99 5 100-177 1-4 178-200 5-41 201-222 42-86 223-350 87-99 6 100-179 1-2 180-205 3-39 206-224 40-81 225-350 82-99 7 100-182 1-2 183-212 3-46 213-233 47-87 234-350 88-99 8 100-195 1-9 196-216 10-47 217-234 48-83 235-350 84-99 Winter 2 100-154 1-3 155-176 4-38 177-201 39-91 202-350 92-99 3 100-171 1-8 172-190 9-42 191-211 43-86 212-350 87-99 4 100-184 1-5 185-205 6-41 206-225 42-85	Fall												
4 100-168 1-4 169-191 5-38 192-208 39-76 209-350 77-99 5 100-177 1-4 178-200 5-41 201-222 42-86 223-350 87-99 6 100-179 1-2 180-205 3-39 206-224 40-81 225-350 82-99 7 100-182 1-2 183-212 3-46 213-233 47-87 234-350 88-99 8 100-195 1-9 196-216 10-47 217-234 48-83 235-350 84-99 Winter 2 100-154 1-3 155-176 4-38 177-201 39-91 202-350 92-99 3 100-171 1-8 172-190 9-42 191-211 43-86 212-350 87-99 4 100-176 1-5 177-197 6-38 198-213 39-75 214-350 76-99 5 100-184 1-5 185-205 6-41 206-225 42-85	2	100–143	1–2	144–167	3–38	168 –194	39–92	195–350	93–99				
5 100-177 1-4 178-200 5-41 201-222 42-86 223-350 87-99 6 100-179 1-2 180-205 3-39 206-224 40-81 225-350 82-99 7 100-182 1-2 183-212 3-46 213-233 47-87 234-350 88-99 8 100-195 1-9 196-216 10-47 217-234 48-83 235-350 84-99 Winter 2 100-154 1-3 155-176 4-38 177-201 39-91 202-350 92-99 3 100-171 1-8 172-190 9-42 191-211 43-86 212-350 87-99 4 100-176 1-5 177-197 6-38 198-213 39-75 214-350 76-99 5 100-184 1-5 185-205 6-41 206-225 42-85 226-350 86-99 6 100-185 1-3 186-209 4-40 210-226 41-79	3	100–161	1–6	162–182	7–40	183 –205	41–87	206–350	88–99				
6 100-179 1-2 180-205 3-39 206-224 40-81 225-350 82-99 7 100-182 1-2 183-212 3-46 213-233 47-87 234-350 88-99 8 100-195 1-9 196-216 10-47 217-234 48-83 235-350 84-99 Winter 2 100-154 1-3 155-176 4-38 177-201 39-91 202-350 92-99 3 100-171 1-8 172-190 9-42 191-211 43-86 212-350 87-99 4 100-176 1-5 177-197 6-38 198-213 39-75 214-350 76-99 5 100-184 1-5 185-205 6-41 206-225 42-85 226-350 86-99 6 100-185 1-3 186-209 4-40 210-226 41-79 227-350 87-99 8 100-199 1-10 200-219 11-48 220-235 49-81	4	100–168	1–4	169–191	5–38	192 –208	39–76	209–350	77–99				
7 100-182 1-2 183-212 3-46 213-233 47-87 234-350 88-99 8 100-195 1-9 196-216 10-47 217-234 48-83 235-350 84-99 Winter 2 100-154 1-3 155-176 4-38 177-201 39-91 202-350 92-99 3 100-171 1-8 172-190 9-42 191-211 43-86 212-350 87-99 4 100-176 1-5 177-197 6-38 198-213 39-75 214-350 76-99 5 100-184 1-5 185-205 6-41 206-225 42-85 226-350 86-99 6 100-185 1-3 186-209 4-40 210-226 41-79 227-350 80-99 7 100-186 1-2 187-215 3-46 216-234 47-86 235-350 87-99 8 100-199 1-10 200-219 11-48 220-235 49-81	5	100–177	1–4	178–200	5–41	201 –222	42-86	223-350	87–99				
8 100-195 1-9 196-216 10-47 217-234 48-83 235-350 84-99 Winter 2 100-154 1-3 155-176 4-38 177-201 39-91 202-350 92-99 3 100-171 1-8 172-190 9-42 191-211 43-86 212-350 87-99 4 100-176 1-5 177-197 6-38 198-213 39-75 214-350 76-99 5 100-184 1-5 185-205 6-41 206-225 42-85 226-350 86-99 6 100-185 1-3 186-209 4-40 210-226 41-79 227-350 80-99 7 100-186 1-2 187-215 3-46 216-234 47-86 235-350 87-99 8 100-199 1-10 200-219 11-48 220-235 49-81 236-350 82-99 Spring 2 100-159 1-4 160-181 5-40	6	100–179	1–2	180–205	3–39	206 –224	40–81	225-350	82–99				
Winter 2 100-154 1-3 155-176 4-38 177-201 39-91 202-350 92-99 3 100-171 1-8 172-190 9-42 191-211 43-86 212-350 87-99 4 100-176 1-5 177-197 6-38 198-213 39-75 214-350 76-99 5 100-184 1-5 185-205 6-41 206-225 42-85 226-350 86-99 6 100-185 1-3 186-209 4-40 210-226 41-79 227-350 80-99 7 100-186 1-2 187-215 3-46 216-234 47-86 235-350 87-99 8 100-199 1-10 200-219 11-48 220-235 49-81 236-350 82-99 Spring 2 100-159 1-4 160-181 5-40 182-205 41-90 206-350 91-99 3 100-175 1-9 176-193 10-41 194-213	7	100–182	1–2	183–212	3–46	213 –233 47–87		234–350	88–99				
2 100-154 1-3 155-176 4-38 177-201 39-91 202-350 92-99 3 100-171 1-8 172-190 9-42 191-211 43-86 212-350 87-99 4 100-176 1-5 177-197 6-38 198-213 39-75 214-350 76-99 5 100-184 1-5 185-205 6-41 206-225 42-85 226-350 86-99 6 100-185 1-3 186-209 4-40 210-226 41-79 227-350 80-99 7 100-186 1-2 187-215 3-46 216-234 47-86 235-350 87-99 8 100-199 1-10 200-219 11-48 220-235 49-81 236-350 82-99 Spring 2 100-159 1-4 160-181 5-40 182-205 41-90 206-350 91-99 3 100-159 1-4 160-193 10-41 194-213 42-84	8	100–195	1–9	196–216	10–47	217 –234	217 –234 48–83		84–99				
3 100-171 1-8 172-190 9-42 191-211 43-86 212-350 87-99 4 100-176 1-5 177-197 6-38 198-213 39-75 214-350 76-99 5 100-184 1-5 185-205 6-41 206-225 42-85 226-350 86-99 6 100-185 1-3 186-209 4-40 210-226 41-79 227-350 80-99 7 100-186 1-2 187-215 3-46 216-234 47-86 235-350 87-99 8 100-199 1-10 200-219 11-48 220-235 49-81 236-350 82-99 Spring 2 100-159 1-4 160-181 5-40 182-205 41-90 206-350 91-99 3 100-175 1-9 176-193 10-41 194-213 42-84 214-350 85-99 4 100-180 1-6 181-200 7-40 201-215 41-74 216-350 75-99 5 100-187 1-7 188-207	Winter												
4 100-176 1-5 177-197 6-38 198-213 39-75 214-350 76-99 5 100-184 1-5 185-205 6-41 206-225 42-85 226-350 86-99 6 100-185 1-3 186-209 4-40 210-226 41-79 227-350 80-99 7 100-186 1-2 187-215 3-46 216-234 47-86 235-350 87-99 8 100-199 1-10 200-219 11-48 220-235 49-81 236-350 82-99 Spring 2 100-159 1-4 160-181 5-40 182-205 41-90 206-350 91-99 3 100-175 1-9 176-193 10-41 194-213 42-84 214-350 85-99 4 100-180 1-6 181-200 7-40 201-215 41-74 216-350 75-99 5 100-187 1-7 188-207 8-42 208-226 43-83 227-350 84-99 6 100-188 1-4 189-211	2	100–154	1–3	155–176	4–38	177 –201	39–91	202–350	92–99				
5 100-184 1-5 185-205 6-41 206-225 42-85 226-350 86-99 6 100-185 1-3 186-209 4-40 210-226 41-79 227-350 80-99 7 100-186 1-2 187-215 3-46 216-234 47-86 235-350 87-99 8 100-199 1-10 200-219 11-48 220-235 49-81 236-350 82-99 Spring 2 100-159 1-4 160-181 5-40 182-205 41-90 206-350 91-99 3 100-175 1-9 176-193 10-41 194-213 42-84 214-350 85-99 4 100-180 1-6 181-200 7-40 201-215 41-74 216-350 75-99 5 100-187 1-7 188-207 8-42 208-226 43-83 227-350 84-99 6 100-188 1-4 189-211 5-41 212-227 42-77 228-350 78-99 7 100-189 1-3 190-216 4-46 217-235 47-85 236-350 86-99	3	100–171	1–8	172–190	9–42	191 –211	43–86	212–350	87–99				
6 100-185 1-3 186-209 4-40 210-226 41-79 227-350 80-99 7 100-186 1-2 187-215 3-46 216-234 47-86 235-350 87-99 8 100-199 1-10 200-219 11-48 220-235 49-81 236-350 82-99 Spring 2 100-159 1-4 160-181 5-40 182-205 41-90 206-350 91-99 3 100-175 1-9 176-193 10-41 194-213 42-84 214-350 85-99 4 100-180 1-6 181-200 7-40 201-215 41-74 216-350 75-99 5 100-187 1-7 188-207 8-42 208-226 43-83 227-350 84-99 6 100-188 1-4 189-211 5-41 212-227 42-77 228-350 78-99 7 100-189 1-3 190-216 4-46 217-235 47-85 236-350 86-99	4	100–176	1–5	177–197	6–38	198 –213	39–75	214–350	76–99				
7 100-186 1-2 187-215 3-46 216-234 47-86 235-350 87-99 8 100-199 1-10 200-219 11-48 220-235 49-81 236-350 82-99 Spring 2 100-159 1-4 160-181 5-40 182-205 41-90 206-350 91-99 3 100-175 1-9 176-193 10-41 194-213 42-84 214-350 85-99 4 100-180 1-6 181-200 7-40 201-215 41-74 216-350 75-99 5 100-187 1-7 188-207 8-42 208-226 43-83 227-350 84-99 6 100-188 1-4 189-211 5-41 212-227 42-77 228-350 78-99 7 100-189 1-3 190-216 4-46 217-235 47-85 236-350 86-99	5	100–184	1–5	185–205	6–41	206 –225	42–85	226–350	86–99				
8 100-199 1-10 200-219 11-48 220-235 49-81 236-350 82-99 Spring 2 100-159 1-4 160-181 5-40 182-205 41-90 206-350 91-99 3 100-175 1-9 176-193 10-41 194-213 42-84 214-350 85-99 4 100-180 1-6 181-200 7-40 201-215 41-74 216-350 75-99 5 100-187 1-7 188-207 8-42 208-226 43-83 227-350 84-99 6 100-188 1-4 189-211 5-41 212-227 42-77 228-350 78-99 7 100-189 1-3 190-216 4-46 217-235 47-85 236-350 86-99	6	100–185	1–3	186–209	4–40	210 –226	41–79	227-350	80–99				
Spring 2 100-159 1-4 160-181 5-40 182-205 41-90 206-350 91-99 3 100-175 1-9 176-193 10-41 194-213 42-84 214-350 85-99 4 100-180 1-6 181-200 7-40 201-215 41-74 216-350 75-99 5 100-187 1-7 188-207 8-42 208-226 43-83 227-350 84-99 6 100-188 1-4 189-211 5-41 212-227 42-77 228-350 78-99 7 100-189 1-3 190-216 4-46 217-235 47-85 236-350 86-99	7	100–186	1–2	187–215	3–46	216 –234	47–86	235–350	87–99				
2 100-159 1-4 160-181 5-40 182-205 41-90 206-350 91-99 3 100-175 1-9 176-193 10-41 194-213 42-84 214-350 85-99 4 100-180 1-6 181-200 7-40 201-215 41-74 216-350 75-99 5 100-187 1-7 188-207 8-42 208-226 43-83 227-350 84-99 6 100-188 1-4 189-211 5-41 212-227 42-77 228-350 78-99 7 100-189 1-3 190-216 4-46 217-235 47-85 236-350 86-99	8	100–199	1–10	200–219	11–48	220 –235	49–81	236–350	82–99				
3 100-175 1-9 176-193 10-41 194-213 42-84 214-350 85-99 4 100-180 1-6 181-200 7-40 201-215 41-74 216-350 75-99 5 100-187 1-7 188-207 8-42 208-226 43-83 227-350 84-99 6 100-188 1-4 189-211 5-41 212-227 42-77 228-350 78-99 7 100-189 1-3 190-216 4-46 217-235 47-85 236-350 86-99	Spring												
4 100-180 1-6 181-200 7-40 201-215 41-74 216-350 75-99 5 100-187 1-7 188-207 8-42 208-226 43-83 227-350 84-99 6 100-188 1-4 189-211 5-41 212-227 42-77 228-350 78-99 7 100-189 1-3 190-216 4-46 217-235 47-85 236-350 86-99	2	100–159	1–4	160–181	5–40	182 –205	41–90	206–350	91–99				
5 100-187 1-7 188-207 8-42 208-226 43-83 227-350 84-99 6 100-188 1-4 189-211 5-41 212-227 42-77 228-350 78-99 7 100-189 1-3 190-216 4-46 217-235 47-85 236-350 86-99	3	100–175	1–9	176–193	10–41	194 –213	42–84	214–350	85–99				
6 100–188 1–4 189–211 5–41 212 –227 42–77 228–350 78–99 7 100–189 1–3 190–216 4–46 217 –235 47–85 236–350 86–99	4	100–180	1–6	181–200	7–40	201 –215	41–74	216–350	75–99				
7 100–189 1–3 190–216 4–46 217 –235 47–85 236–350 86–99	5	100–187	1–7	188–207	8–42	208 –226	43–83	227–350	84–99				
	6	100–188	1–4	189–211	5–41	212 –227	42–77	228–350	78–99				
8 100–201 1–11 202–220 12–47 221 –236 48–81 237–350 82–99	7	100–189	1–3	190–216	4–46	217 –235	47–85	236–350	86–99				
	8	100–201	1–11	202–220	12–47	221 –236	48–81	237–350	82–99				

^{*}Cut scores for fall and winter are derived from the spring cuts and growth norms based on the typical instructional weeks. Spring cut scores for Grade 2 were derived from the Grade 3 cuts using the growth norms. Bolded numbers indicate the cut scores considered to be at least proficient for accountability purposes.

Table 3.6. MAP Growth Cut Scores—Mathematics

			Р	SSA Mathem	atics			
Grade	Belov	w Basic	Ва	asic	Prof	ficient	Adv	anced
3	600)–922	923	– 999	1000 –1109		≥1	110
4	600)–907	908	– 999	1000 –1106		≥1	107
5	600)–900	901	-999	1000	– 1112	≥1113	
6	600)–896	897	– 999	1000	– 1104	≥1	105
7	600)–903	904	-999	1000	– 1108	≥1	109
8	600)–905	906	-999	1000	– 1107	≥1	108
			MAP	Growth Math	ematics*			
	Belov	w Basic	Ba	asic	Prof	ficient	Adv	anced
Grade	RIT	Percentile	RIT	Percentile	RIT	Percentile	RIT	Percentile
Fall								
2	100–161	1–15	162–174	16–49	175 –188	50–85	189–350	86–99
3	100–177	1–21	178–187	22-48	188 –200	49–81	201–350	82–99
4	100–190	1–27	191–204	28-64	205 –217	65–89	218–350	90–99
5	100–197	1–22	198–213	23–62	214 –228	63–89	229-350	90–99
6	100–203	1–24	204–222	25–69	223 –236	70–91	237–350	92–99
7	100–215	1–39	216–230	40–72	231 –245	73–92	246-350	93–99
8	100–222	1–45	223–240	46–79	241 –257	80–95	258-350	96–99
Winter								
2	100–171	1–17	172–183	18–49	184 –196	50–83	197–350	84–99
3	100–185	1–22	186–195	23–48	196 –207	49–80	208-350	81–99
4	100–197	1–28	198–211	29–65	212 –224	66–89	225-350	90–99
5	100–202	1–22	203–219	23–62	220 –234	63–89	235-350	90–99
6	100–208	1–25	209–227	26–68	228 –241	69–90	242-350	91–99
7	100–218	1–38	219–234	39–72	235 –249	73–92	250-350	93–99
8	100–225	1–45	226–243	46–78	244 –260	79–95	261–350	96–99
Spring								
2	100–177	1–19	178–188	20-48	189 –201	49–82	202-350	83–99
3	100–190	1–23	191–200	24–49	201 –212	50–79	213-350	80–99
4	100–201	1–28	202–215	29–63	216 –228	64–87	229–350	88–99
5	100–206	1–23	207–223	24–61	224 –238	62–88	239–350	89–99
6	100–211	1–26	212–230	27–67	231 –244	68–89	245-350	90–99
7	100–221	1–39	222–237	40–72	238 –252	73–91	253–350	92–99
8	100–227	1–44	228–245	45–77	246 –262	78–94	263–350	95–99

^{*}Cut scores for fall and winter are derived from the spring cuts and growth norms based on the typical instructional weeks. Spring cut scores for Grade 2 were derived from the Grade 3 cuts using the growth norms. Bolded numbers indicate the cut scores considered to be at least proficient for accountability purposes.

3.4. Classification Accuracy

Table 3.7 presents the classification accuracy summary statistics, including the overall classification accuracy rate. These results indicate how well MAP Growth spring RIT scores predict proficiency on the PSSA tests, providing insight into the predictive validity of MAP Growth. The overall classification accuracy rate ranges from 0.82 to 0.86 for ELA/reading and 0.84 to 0.91 for mathematics. These values suggest that the RIT cut scores are good at classifying students as proficient or not proficient on the PSSA assessment. For Grade 2, the classification accuracy rate refers to how well the MAP Growth cuts can predict students' proficiency status on PSSA in Grade 3.

Although the results show that MAP Growth scores can be used to accurately classify students as likely to be proficient on the PSSA tests, there is a notable limitation to how these results should be used and interpreted. The PSSA and MAP Growth assessments are designed for different purposes and measure slightly different constructs even within the same content area. Therefore, scores on the two tests cannot be assumed to be interchangeable. MAP Growth may not be used as a substitute for the state tests and vice versa.

Table 3.7. Classification Accuracy Results

		Cut Sco	re	Class.	Ra	te*				
Grade	N	MAP Growth	PSSA	Accuracy*	FP	FN	Sensitivity	Specificity	Precision	AUC*
ELA/Reading										
2	2,647	182	1000	0.82	0.22	0.14	0.86	0.78	0.83	0.91
3	2,982	194	1000	0.86	0.22	0.09	0.91	0.78	0.87	0.94
4	3,262	201	1000	0.86	0.21	0.10	0.90	0.79	0.88	0.94
5	3,300	208	1000	0.85	0.22	0.09	0.91	0.78	0.85	0.94
6	2,913	212	1000	0.84	0.24	0.11	0.89	0.76	0.87	0.91
7	2,712	217	1000	0.83	0.24	0.11	0.89	0.76	0.85	0.91
8	2,618	221	1000	0.83	0.23	0.13	0.87	0.77	0.84	0.91
Mathema	atics									
2	2,340	189	1000	0.84	0.17	0.15	0.85	0.83	0.82	0.92
3	2,690	201	1000	0.88	0.18	0.08	0.92	0.82	0.87	0.95
4	3,033	216	1000	0.88	0.12	0.12	0.88	0.88	0.86	0.96
5	2,924	224	1000	0.87	0.13	0.12	0.88	0.87	0.84	0.96
6	2,719	231	1000	0.88	0.10	0.15	0.85	0.90	0.85	0.95
7	2,723	238	1000	0.91	0.07	0.12	0.88	0.93	0.88	0.97
8	2,671	246	1000	0.89	0.08	0.17	0.83	0.92	0.83	0.96

^{*}Class. Accuracy = overall classification accuracy rate. FP = false positives. FN = false negatives. AUC = area under the ROC curve.

3.5. Proficiency Projection

Table 3.8 and Table 3.9 present the estimated probability of achieving *Proficient* performance on the PSSA test based on RIT scores from fall, winter, or spring. "Prob." indicates the probability of obtaining proficient status on the PSSA test in the spring. For example, a Grade 3 student who obtained a MAP Growth Reading score of 201 in the fall has a 98% chance of reaching *Proficient* or higher on the PSSA test.

Table 3.8. Proficiency Projection based on RIT Scores—ELA/Reading

					ELA/	Reading					
				Fall			Winter			Spring	
	Start	Spring	Fall	Projected P	roficiency	Winter	Projected P	roficiency	Spring	Projected P	roficiency
Grade	%ile	Cut	RIT	Proficient	Prob.	RIT	Proficient	Prob.	RIT	Proficient	Prob.
	5	182	147	No	0.01	156	No	<0.01	160	No	<0.01
	10	182	153	No	0.03	162	No	<0.01	166	No	<0.01
	15	182	157	No	0.09	166	No	0.02	170	No	<0.01
	20	182	160	No	0.18	169	No	0.07	173	No	<0.01
	25	182	162	No	0.21	171	No	0.13	175	No	0.01
	30	182	164	No	0.30	173	No	0.23	177	No	0.06
	35	182	166	No	0.40	175	No	0.35	180	No	0.27
	40	182	168	Yes	0.50	177	Yes	0.50	182	Yes	0.50
	45	182	170	Yes	0.55	179	Yes	0.57	184	Yes	0.73
2	50	182	172	Yes	0.65	181	Yes	0.71	186	Yes	0.89
	55	182	174	Yes	0.75	183	Yes	0.83	188	Yes	0.97
	60	182	176	Yes	0.82	185	Yes	0.90	189	Yes	0.99
	65	182	178	Yes	0.88	187	Yes	0.95	192	Yes	>0.99
	70	182	180	Yes	0.91	189	Yes	0.98	194	Yes	>0.99
	75	182	183	Yes	0.96	191	Yes	0.99	196	Yes	>0.99
	80	182	185	Yes	0.98	194	Yes	>0.99	199	Yes	>0.99
	85	182	188	Yes	0.99	197	Yes	>0.99	202	Yes	>0.99
	90	182	192	Yes	>0.99	200	Yes	>0.99	205	Yes	>0.99
	95	182	197	Yes	>0.99	206	Yes	>0.99	211	Yes	>0.99
	5	194	159	No	<0.01	167	No	<0.01	170	No	<0.01
	10	194	165	No	0.02	173	No	<0.01	176	No	<0.01
	15	194	169	No	0.05	177	No	0.01	180	No	<0.01
	20	194	173	No	0.11	180	No	0.03	183	No	<0.01
	25	194	175	No	0.17	183	No	0.09	186	No	0.01
	30	194	178	No	0.30	185	No	0.17	189	No	0.06
	35	194	180	No	0.34	188	No	0.35	191	No	0.17
	40	194	182	No	0.45	190	No	0.43	193	No	0.38
	45	194	185	Yes	0.61	192	Yes	0.57	195	Yes	0.62
3	50	194	187	Yes	0.66	194	Yes	0.71	197	Yes	0.83
	55	194	189	Yes	0.75	196	Yes	0.83	199	Yes	0.94
	60	194	191	Yes	0.83	198	Yes	0.91	201	Yes	0.99
	65	194	193	Yes	0.89	200	Yes	0.95	203	Yes	>0.99
	70	194	195	Yes	0.91	202	Yes	0.98	206	Yes	>0.99
	75	194	198	Yes	0.96	205	Yes	>0.99	208	Yes	>0.99
	80	194	201	Yes	0.98	207	Yes	>0.99	211	Yes	>0.99
	85	194	204	Yes	0.99	211	Yes	>0.99	214	Yes	>0.99
	90	194	208	Yes	>0.99	215	Yes	>0.99	218	Yes	>0.99
	95	194	214	Yes	>0.99	220	Yes	>0.99	224	Yes	>0.99

					ELA/	Reading					
				Fall			Winter			Spring	
	Ctort	Corina	Fall	Projected P	roficiency	Winter	Projected P	roficiency	Corina	Projected P	roficiency
Grade	Start %ile	Spring Cut	RIT	Proficient	Prob.	Winter RIT	Proficient	Prob.	Spring RIT	Proficient	Prob.
	5	201	169	No	<0.01	176	No	<0.01	178	No	<0.01
	10	201	175	No	0.02	182	No	<0.01	184	No	<0.01
	15	201	179	No	0.05	186	No	0.01	188	No	<0.01
	20	201	183	No	0.13	189	No	0.04	191	No	<0.01
	25	201	185	No	0.20	192	No	0.13	194	No	0.01
	30	201	188	No	0.29	194	No	0.22	196	No	0.06
	35	201	190	No	0.39	196	No	0.35	199	No	0.27
	40	201	192	Yes	0.50	198	Yes	0.50	201	Yes	0.50
	45	201	195	Yes	0.61	200	Yes	0.58	203	Yes	0.73
4	50	201	197	Yes	0.71	202	Yes	0.72	205	Yes	0.89
	55	201	199	Yes	0.80	205	Yes	0.87	207	Yes	0.97
	60	201	201	Yes	0.87	207	Yes	0.94	209	Yes	0.99
	65	201	203	Yes	0.89	209	Yes	0.97	211	Yes	>0.99
	70	201	205	Yes	0.94	211	Yes	0.99	213	Yes	>0.99
	75	201	208	Yes	0.97	213	Yes	>0.99	216	Yes	>0.99
	80	201	211	Yes	0.99	216	Yes	>0.99	219	Yes	>0.99
	85	201	214	Yes	>0.99	219	Yes	>0.99	222	Yes	>0.99
	90	201	218	Yes	>0.99	223	Yes	>0.99	226	Yes	>0.99
	95	201	224	Yes	>0.99	229	Yes	>0.99	232	Yes	>0.99
	5	208	178	No	<0.01	183	No	<0.01	185	No	<0.01
	10	208	183	No	0.01	189	No	<0.01	191	No	<0.01
	15	208	187	No	0.05	193	No	0.01	194	No	<0.01
	20	208	191	No	0.11	196	No	0.04	198	No	<0.01
	25	208	193	No	0.17	198	No	0.06	200	No	0.01
	30	208	196	No	0.29	201	No	0.17	203	No	0.06
	35	208	198	No	0.34	203	No	0.28	205	No	0.17
	40	208	200	No	0.44	205	No	0.42	207	No	0.38
	45	208	202	Yes	0.56	207	Yes	0.58	209	Yes	0.62
5	50	208	204	Yes	0.66	209	Yes	0.72	211	Yes	0.83
	55	208	207	Yes	0.76	211	Yes	0.83	213	Yes	0.94
	60	208	209	Yes	0.83	213	Yes	0.91	215	Yes	0.99
	65	208	211	Yes	0.89	215	Yes	0.96	217	Yes	>0.99
	70	208	213	Yes	0.92	217	Yes	0.97	219	Yes	>0.99
	75	208	216	Yes	0.96	220	Yes	0.99	222	Yes	>0.99
	80	208	218	Yes	0.98	222	Yes	>0.99	224	Yes	>0.99
	85	208	221	Yes	0.99	226	Yes	>0.99	228	Yes	>0.99
	90	208	225	Yes	>0.99	229	Yes	>0.99	231	Yes	>0.99
	95	208	231	Yes	>0.99	235	Yes	>0.99	237	Yes	>0.99

					ELA/	Reading					
				Fall			Winter			Spring	
	011	0	Fall	Projected P	roficiency	VA/Sections	Projected P	roficiency	0	Projected P	roficiency
Grade	Start %ile	Spring Cut	RIT	Proficient	Prob.	Winter RIT	Proficient	Prob.	Spring RIT	Proficient	Prob.
	5	212	183	No	<0.01	188	No	<0.01	189	No	<0.01
	10	212	189	No	0.02	193	No	<0.01	195	No	<0.01
	15	212	193	No	0.04	197	No	0.01	199	No	<0.01
	20	212	196	No	0.10	200	No	0.03	202	No	<0.01
	25	212	199	No	0.19	203	No	0.09	205	No	0.01
	30	212	202	No	0.28	205	No	0.17	207	No	0.06
	35	212	204	No	0.39	208	No	0.35	209	No	0.17
	40	212	206	Yes	0.50	210	Yes	0.50	211	No	0.38
	45	212	208	Yes	0.56	212	Yes	0.65	213	Yes	0.62
6	50	212	210	Yes	0.67	214	Yes	0.78	215	Yes	0.83
	55	212	212	Yes	0.76	216	Yes	0.83	217	Yes	0.94
	60	212	214	Yes	0.84	218	Yes	0.91	219	Yes	0.99
	65	212	217	Yes	0.90	220	Yes	0.96	222	Yes	>0.99
	70	212	219	Yes	0.94	222	Yes	0.98	224	Yes	>0.99
	75	212	221	Yes	0.97	225	Yes	>0.99	226	Yes	>0.99
	80	212	224	Yes	0.98	227	Yes	>0.99	229	Yes	>0.99
	85	212	227	Yes	>0.99	230	Yes	>0.99	232	Yes	>0.99
	90	212	231	Yes	>0.99	234	Yes	>0.99	236	Yes	>0.99
	95	212	237	Yes	>0.99	240	Yes	>0.99	242	Yes	>0.99
	5	217	187	No	<0.01	190	No	<0.01	191	No	<0.01
	10	217	193	No	<0.01	196	No	<0.01	197	No	<0.01
	15	217	197	No	0.02	200	No	<0.01	201	No	<0.01
	20	217	200	No	0.06	203	No	0.01	205	No	<0.01
	25	217	203	No	0.10	206	No	0.04	207	No	<0.01
	30	217	206	No	0.19	209	No	0.12	210	No	0.01
	35	217	208	No	0.28	211	No	0.22	212	No	0.06
	40	217	210	No	0.39	213	No	0.28	214	No	0.17
	45	217	212	No	0.44	215	No	0.42	216	No	0.38
7	50	217	214	Yes	0.56	217	Yes	0.58	218	Yes	0.62
	55	217	216	Yes	0.67	219	Yes	0.72	220	Yes	0.83
	60	217	218	Yes	0.76	221	Yes	0.83	223	Yes	0.97
	65	217	221	Yes	0.84	223	Yes	0.91	225	Yes	0.99
	70	217	223	Yes	0.90	226	Yes	0.97	227	Yes	>0.99
	75	217	225	Yes	0.94	228	Yes	0.99	229	Yes	>0.99
	80	217	228	Yes	0.98	231	Yes	>0.99	232	Yes	>0.99
	85	217	231	Yes	0.99	234	Yes	>0.99	235	Yes	>0.99
	90	217	235	Yes	>0.99	238	Yes	>0.99	239	Yes	>0.99
	95	217	241	Yes	>0.99	244	Yes	>0.99	245	Yes	>0.99

	ELA/Reading													
				Fall			Winter			Spring				
	Start	Spring	Fall	Projected Proficiency		Winter	Projected Proficiency		Spring	Projected Proficiency				
Grade	%ile	Cut	RIT	Proficient	Prob.	RIT	Proficient	Prob.	RIT	Proficient	Prob.			
	5	221	190	No	<0.01	193	No	<0.01	194	No	<0.01			
	10	221	196	No	<0.01	199	No	<0.01	200	No	<0.01			
	15	221	200	No	0.02	203	No	<0.01	204	No	<0.01			
	20	221	204	No	0.05	206	No	0.01	207	No	<0.01			
	25	221	207	No	0.11	209	No	0.03	210	No	<0.01			
	30	221	209	No	0.17	212	No	0.06	213	No	0.01			
	35	221	211	No	0.20	214	No	0.13	215	No	0.03			
	40	221	214	No	0.34	216	No	0.22	217	No	0.11			
	45	221	216	No	0.45	218	No	0.35	220	No	0.38			
8	50	221	218	Yes	0.55	221	Yes	0.58	222	Yes	0.62			
	55	221	220	Yes	0.61	223	Yes	0.72	224	Yes	0.83			
	60	221	222	Yes	0.71	225	Yes	0.83	226	Yes	0.94			
	65	221	225	Yes	0.83	227	Yes	0.91	228	Yes	0.99			
	70	221	227	Yes	0.89	229	Yes	0.96	231	Yes	>0.99			
	75	221	230	Yes	0.94	232	Yes	0.99	233	Yes	>0.99			
	80	221	232	Yes	0.96	235	Yes	>0.99	236	Yes	>0.99			
	85	221	236	Yes	0.99	238	Yes	>0.99	239	Yes	>0.99			
	90	221	240	Yes	>0.99	242	Yes	>0.99	243	Yes	>0.99			
	95	221	246	Yes	>0.99	248	Yes	>0.99	249	Yes	>0.99			

Table 3.9. Proficiency Projection based on RIT Scores—Mathematics

				jection base		ematics					
				Fall			Winter	_		Spring	
				Projected P	roficiency		Projected P	roficiency		Projected P	roficiency
Grade	Start %ile	Spring Cut	Fall RIT	Proficient	Prob.	Winter RIT	Proficient	Prob.	Spring RIT	Proficient	Prob.
	5	189	154	No	<0.01	163	No	<0.01	167	No	<0.01
	10	189	158	No	0.01	167	No	<0.01	172	No	<0.01
	15	189	162	No	0.04	171	No	0.01	175	No	<0.01
	20	189	164	No	0.06	173	No	0.02	178	No	<0.01
	25	189	166	No	0.11	175	No	0.05	180	No	<0.01
	30	189	168	No	0.18	177	No	0.10	182	No	0.01
	35	189	170	No	0.27	179	No	0.20	184	No	0.04
	40	189	172	No	0.38	181	No	0.26	186	No	0.15
	45	189	173	No	0.44	182	No	0.34	188	No	0.37
2	50	189	175	Yes	0.50	184	Yes	0.50	189	Yes	0.50
	55	189	177	Yes	0.62	186	Yes	0.66	191	Yes	0.75
	60	189	178	Yes	0.68	187	Yes	0.74	193	Yes	0.92
	65	189	180	Yes	0.78	189	Yes	0.85	195	Yes	0.98
	70	189	182	Yes	0.86	191	Yes	0.93	196	Yes	0.99
	75	189	184	Yes	0.92	193	Yes	0.97	198	Yes	>0.99
	80	189	186	Yes	0.94	195	Yes	0.99	201	Yes	>0.99
	85	189	188	Yes	0.97	198	Yes	>0.99	203	Yes	>0.99
	90	189	192	Yes	0.99	201	Yes	>0.99	207	Yes	>0.99
	95	189	196	Yes	>0.99	205	Yes	>0.99	212	Yes	>0.99
	5	201	166	No	<0.01	174	No	<0.01	178	No	<0.01
	10	201	171	No	<0.01	179	No	<0.01	183	No	<0.01
	15	201	175	No	0.02	182	No	<0.01	186	No	<0.01
	20	201	177	No	0.04	185	No	0.01	189	No	<0.01
	25	201	179	No	0.07	187	No	0.03	192	No	<0.01
	30	201	181	No	0.13	189	No	0.07	194	No	0.01
	35	201	183	No	0.21	191	No	0.14	196	No	0.04
	40	201	185	No	0.31	193	No	0.26	198	No	0.15
	45	201	187	No	0.44	195	No	0.42	199	No	0.25
3	50	201	188	Yes	0.50	196	Yes	0.50	201	Yes	0.50
	55	201	190	Yes	0.63	198	Yes	0.67	203	Yes	0.75
	60	201	192	Yes	0.69	200	Yes	0.80	205	Yes	0.92
	65	201	194	Yes	0.79	201	Yes	0.86	207	Yes	0.98
	70	201	196	Yes	0.87	203	Yes	0.93	208	Yes	0.99
	75	201	198	Yes	0.93	205	Yes	0.97	211	Yes	>0.99
	80	201	200	Yes	0.96	208	Yes	0.99	213	Yes	>0.99
	85	201	202	Yes	0.98	210	Yes	>0.99	216	Yes	>0.99
	90	201	206	Yes	>0.99	214	Yes	>0.99	219	Yes	>0.99
	95	201	211	Yes	>0.99	219	Yes	>0.99	224	Yes	>0.99

					Math	ematics					
				Fall			Winter			Spring	
	011	0	Fall	Projected P	roficiency	VA/Sections	Projected P	roficiency	0	Projected P	roficiency
Grade	Start %ile	Spring Cut	RIT	Proficient	Prob.	Winter RIT	Proficient	Prob.	Spring RIT	Proficient	Prob.
	5	216	176	No	<0.01	182	No	<0.01	185	No	<0.01
	10	216	181	No	<0.01	187	No	<0.01	191	No	<0.01
	15	216	185	No	<0.01	191	No	<0.01	194	No	<0.01
	20	216	187	No	<0.01	194	No	<0.01	197	No	<0.01
	25	216	190	No	0.01	196	No	<0.01	200	No	<0.01
	30	216	192	No	0.02	198	No	<0.01	202	No	<0.01
	35	216	194	No	0.04	200	No	0.01	205	No	<0.01
	40	216	196	No	0.07	202	No	0.02	207	No	<0.01
	45	216	198	No	0.13	204	No	0.04	209	No	0.01
4	50	216	200	No	0.21	206	No	0.10	211	No	0.04
	55	216	201	No	0.26	208	No	0.20	212	No	0.08
	60	216	203	No	0.37	210	No	0.33	214	No	0.25
	65	216	205	Yes	0.50	212	Yes	0.50	217	Yes	0.63
	70	216	207	Yes	0.63	214	Yes	0.67	219	Yes	0.85
	75	216	209	Yes	0.74	216	Yes	0.80	221	Yes	0.96
	80	216	212	Yes	0.87	219	Yes	0.93	224	Yes	>0.99
	85	216	214	Yes	0.93	221	Yes	0.97	227	Yes	>0.99
	90	216	218	Yes	0.98	225	Yes	>0.99	230	Yes	>0.99
	95	216	223	Yes	>0.99	231	Yes	>0.99	236	Yes	>0.99
	5	224	184	No	<0.01	189	No	<0.01	191	No	<0.01
	10	224	190	No	<0.01	194	No	<0.01	197	No	<0.01
	15	224	193	No	<0.01	198	No	<0.01	201	No	<0.01
	20	224	196	No	<0.01	201	No	<0.01	205	No	<0.01
	25	224	199	No	0.01	204	No	<0.01	207	No	<0.01
	30	224	201	No	0.02	206	No	<0.01	210	No	<0.01
	35	224	203	No	0.05	209	No	0.01	212	No	<0.01
	40	224	205	No	0.08	211	No	0.03	215	No	<0.01
	45	224	207	No	0.14	213	No	0.07	217	No	0.01
5	50	224	209	No	0.22	215	No	0.15	219	No	0.04
	55	224	211	No	0.32	217	No	0.26	221	No	0.15
	60	224	213	No	0.44	219	No	0.42	223	No	0.37
	65	224	215	Yes	0.56	221	Yes	0.58	225	Yes	0.63
	70	224	217	Yes	0.68	223	Yes	0.74	228	Yes	0.92
	75	224	219	Yes	0.78	225	Yes	0.85	230	Yes	0.98
	80	224	222	Yes	0.89	228	Yes	0.95	233	Yes	>0.99
	85	224	225	Yes	0.95	231	Yes	0.99	236	Yes	>0.99
	90	224	229	Yes	0.99	235	Yes	>0.99	240	Yes	>0.99
	95	224	234	Yes	>0.99	241	Yes	>0.99	246	Yes	>0.99

					Math	ematics					
				Fall			Winter			Spring	
	Start	Spring	Fall	Projected P	roficiency	Winter	Projected P	roficiency	Spring	Projected P	roficiency
Grade	%ile	Cut	RIT	Proficient	Prob.	RIT	Proficient	Prob.	RIT	Proficient	Prob.
	5	231	188	No	<0.01	192	No	<0.01	194	No	<0.01
	10	231	194	No	<0.01	198	No	<0.01	200	No	<0.01
	15	231	198	No	<0.01	202	No	<0.01	205	No	<0.01
	20	231	201	No	<0.01	205	No	<0.01	208	No	<0.01
	25	231	204	No	<0.01	208	No	<0.01	211	No	<0.01
	30	231	206	No	<0.01	211	No	<0.01	214	No	<0.01
	35	231	209	No	0.01	213	No	<0.01	216	No	<0.01
	40	231	211	No	0.03	215	No	<0.01	218	No	<0.01
	45	231	213	No	0.06	217	No	0.01	221	No	<0.01
6	50	231	215	No	0.10	220	No	0.04	223	No	<0.01
	55	231	217	No	0.17	222	No	0.10	225	No	0.02
	60	231	219	No	0.27	224	No	0.20	227	No	0.08
	65	231	221	No	0.38	226	No	0.34	230	No	0.37
	70	231	223	Yes	0.50	228	Yes	0.50	232	Yes	0.63
	75	231	226	Yes	0.68	231	Yes	0.74	235	Yes	0.92
	80	231	228	Yes	0.78	234	Yes	0.90	238	Yes	0.99
	85	231	231	Yes	0.90	237	Yes	0.97	241	Yes	>0.99
	90	231	235	Yes	0.97	241	Yes	>0.99	245	Yes	>0.99
	95	231	241	Yes	>0.99	247	Yes	>0.99	252	Yes	>0.99
	5	238	192	No	<0.01	194	No	<0.01	196	No	<0.01
	10	238	198	No	<0.01	201	No	<0.01	203	No	<0.01
	15	238	202	No	<0.01	205	No	<0.01	207	No	<0.01
	20	238	206	No	<0.01	209	No	<0.01	211	No	<0.01
	25	238	208	No	<0.01	212	No	<0.01	214	No	<0.01
	30	238	211	No	<0.01	215	No	<0.01	217	No	<0.01
	35	238	213	No	<0.01	217	No	<0.01	220	No	<0.01
	40	238	216	No	<0.01	219	No	<0.01	222	No	<0.01
	45	238	218	No	0.02	222	No	<0.01	224	No	<0.01
7	50	238	220	No	0.04	224	No	0.01	227	No	<0.01
	55	238	222	No	0.07	226	No	0.03	229	No	<0.01
	60	238	225	No	0.17	229	No	0.10	231	No	0.01
	65	238	227	No	0.26	231	No	0.20	234	No	0.08
	70	238	229	No	0.37	233	No	0.33	236	No	0.25
	75	238	232	Yes	0.56	236	Yes	0.58	239	Yes	0.63
	80	238	235	Yes	0.74	239	Yes	0.80	242	Yes	0.92
	85	238	238	Yes	0.87	243	Yes	0.96	246	Yes	>0.99
	90	238	243	Yes	0.97	247	Yes	>0.99	251	Yes	>0.99
-	95	238	249	Yes	>0.99	254	Yes	>0.99	257	Yes	>0.99

	Mathematics													
				Fall			Winter		Spring					
	Start	Spring	Fall	Projected Proficiency		Winter	Projected Proficiency		Spring	Projected Proficiency				
Grade	%ile	Cut	RIT	Proficient	Prob.	RIT	Proficient	Prob.	RIT	Proficient	Prob.			
	5	246	194	No	<0.01	196	No	<0.01	197	No	<0.01			
	10	246	201	No	<0.01	203	No	<0.01	205	No	<0.01			
	15	246	205	No	<0.01	208	No	<0.01	210	No	<0.01			
	20	246	209	No	<0.01	212	No	<0.01	214	No	<0.01			
	25	246	212	No	<0.01	215	No	<0.01	217	No	<0.01			
	30	246	215	No	<0.01	218	No	<0.01	220	No	<0.01			
	35	246	218	No	<0.01	221	No	<0.01	223	No	<0.01			
	40	246	220	No	<0.01	223	No	<0.01	225	No	<0.01			
	45	246	223	No	<0.01	226	No	<0.01	228	No	<0.01			
8	50	246	225	No	0.01	228	No	<0.01	230	No	<0.01			
	55	246	227	No	0.02	231	No	<0.01	233	No	<0.01			
	60	246	230	No	0.06	233	No	0.01	235	No	<0.01			
	65	246	232	No	0.10	236	No	0.05	238	No	<0.01			
	70	246	235	No	0.19	238	No	0.11	241	No	0.04			
	75	246	238	No	0.33	241	No	0.27	244	No	0.25			
	80	246	241	Yes	0.50	244	Yes	0.50	247	Yes	0.63			
	85	246	245	Yes	0.72	248	Yes	0.80	251	Yes	0.96			
	90	246	249	Yes	0.88	253	Yes	0.97	256	Yes	>0.99			
	95	246	256	Yes	0.98	260	Yes	>0.99	263	Yes	>0.99			

4. References

- He, W., & Meyer, J. (2021). *MAP Growth universal screening benchmarks*. NWEA Research Report.
- Kolen, M. J., & Brennan, R. L. (2004). Test equating, scaling, and linking. Springer.
- Lumley, T. (2019). *Survey: Analysis of complex survey samples*. R package version 3.36. https://CRAN.R-project.org/package=survey.
- Pommerich, M., Hanson, B., Harris, D., & Sconing, J. (2004). Issues in conducting linkage between distinct tests. *Applied Psychological Measurement*, 28(4), 247–273.
- Thum, Y. M., & Kuhfeld, M. (2020). *NWEA 2020 MAP Growth achievement status and growth norms for students and schools*. NWEA Research Report.