#### SAMPLE ITEMS

# 9–12 MAP Growth Science for use with Next Generation Science Standards

#### **Test purpose**

The MAP® Growth<sup>™</sup> Science for use with Next Generation Science Standards\* (NGSS) measures growth as students build understanding of the multidimensional NGSS Performance Expectations (PEs). The tests do not provide a summative or diagnostic measure of a student's proficiency in the NGSS PEs or their dimensions. The results can be used as a growth measure of overall student understanding of the NGSS with an overall score—as well as scores in the disciplinary instructional areas of the test. Taking this interim, adaptive test allows students to gauge their growth throughout the school year and from year to year.

#### Multidimensional items, alignment, learning statements, and the learning continuum report

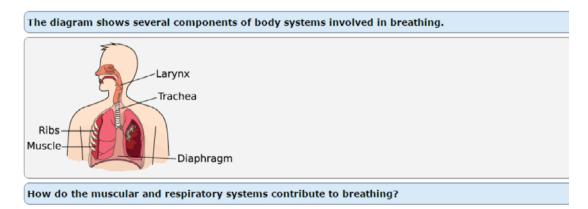
The tests include multidimensional items that align to the NGSS dimensions: **Disciplinary Core Ideas** (DCIs), Science and Engineering Practices (SEPs), and **Crosscutting Concepts (CCCs)**. Some items assess all dimensions of appropriate PEs for a high school interim test, and others assess different combinations of the dimensions. All provide measures of growth toward students' understanding of the DCIs, SEPs, and CCCs of NGSS. Over time, more and more of the item pool will include items aligned to all three dimensions of the NGSS PEs. The information about sample items in this document is color-coded for these dimensions.

All existing items were rated for their alignment to the **DCIs**, **SEPs**, and **CCCs** as cited from *A Framework for K-12 Science Education* (2012 NRC). This process included writing multidimensional learning statements before hand-aligning items to the NGSS PEs.

The NWEA® learning statements are used in the learning continuum reports. These statements give teachers information about how students are performing in the dimensions of the NGSS. The sample items include the learning statements that teachers will see in the reports. For example, below is a portion of the Life Sciences instructional area, From Molecules to Organisms sub-area, Photosynthesis and Respiration topic in three RIT bands:

| From Molecules to Organi                                                                                                                                         | sms: Structures and Processes                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>•</b> 191-200                                                                                                                                                 | 201-210                                                                                                                                                                                                                                                                                                                                                                                                                        | 211-220 📫                                                                                                                                                                                                                                                                                                                                                          |
| Reinforce<br>these skills & concepts                                                                                                                             | Develop<br>these skills & concepts<br>Photosynthesis and Respiration                                                                                                                                                                                                                                                                                                                                                           | Introduce<br>these skills & concepts                                                                                                                                                                                                                                                                                                                               |
| Identifies the source of energy for<br>photosynthesis  Recognizes models of<br>photosynthesis  Recognizes that the stored energy<br>in foods comes from sunlight | Describes how carbon dioxide<br>cycles between cellular respiration<br>and photosynthesis in plants<br>Describes photosynthesis as the<br>conversion of light energy into<br>chemical energy<br>Determines variables and controls<br>in investigations about the effects of<br>light on photosynthesis<br>Identifies the source of energy for<br>photosynthesis<br>Makes claims based on evidence<br>about the needs of plants | Applies scientific ideas to explain<br>observations related to leaves<br>releasing gases  Describes photosynthesis as the<br>conversion of light energy into<br>chemical energy  Identifies the source of energy for<br>photosynthesis  Makes a claim based on evidence<br>about photosynthesis  Recognizes that the stored energy<br>in foods comes from sunlight |

#### **Test blueprint**


The blueprint for the 9–12 MAP Growth Science for use with NGSS has three instructional areas: Life Sciences, Physical Sciences, and Earth and Space Sciences—all with embedded Engineering Design. The sub-areas are derived from the **DCIs**.

\* Next Generation Science Standards is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards were involved in the production of this product, and do not endorse it.

## Instructional area 1: Life Sciences

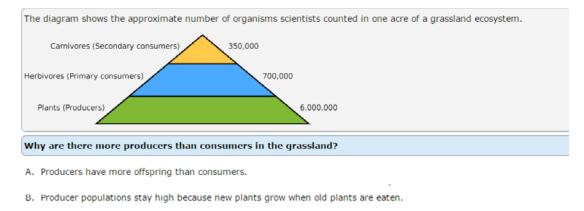
Sub-area 1a: From Molecules to Organisms: Structures and Processes

|                                                                                                                                                                                  | DCI⁺          | SEP"           | ccc           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|---------------|
| Aligned PE: HS-LS1-2 Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms." | Structure and | Developing and | Systems and   |
|                                                                                                                                                                                  | Function      | Using Models   | System Models |
| NWEA learning statement: Describes how systems work together for the body to function, using models                                                                              | Structure and | Developing and | Systems and   |
|                                                                                                                                                                                  | Function      | Using Models   | System Models |
| Item RIT: 217 Item DOK: 2                                                                                                                                                        |               |                |               |



A. The muscles squeeze all sides of the lungs to release air.

- B. The dome-shaped diaphragm lets air fill the lungs from the bottom up.
- C. The muscles around the larynx and trachea push air along the tube and in and out of the lungs.


D. The diaphragm and rib muscles expand and contract the chest cavity, drawing air in and out of the lungs.

**Narrative:** The item provides evidence of students' growth in their understanding of **using models** to describe **how the muscular and respiratory systems work together for humans to breathe**. This item provides understanding of the three dimensions of this high school PE. NWEA is a WebbAlign<sup>®</sup> Depth of Knowledge Partner. This item is rated DOK 2 because students **used a given model** instead of constructing their own **model**.

#### Instructional area 1: Life Sciences

Sub-area 1b: Ecosystems: Interactions, Energy, and Dynamics

|                                                                                                                                                        | DCI <sup>+</sup>                                            | SEP"                                              | CCC                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|------------------------------|
| Aligned PE: HS-LS2-4 Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem." | Cycles of Matter<br>and Energy<br>Transfer in<br>Ecosystems | Using<br>Mathematics<br>Computational<br>Thinking | Energy and<br>Matter         |
| NWEA learning statement: Describes available energy at<br>different trophic levels in ecosystems, using models<br>Item RIT: 225 Item DOK: 2            | Cycles of Matter<br>and Energy<br>Transfer in<br>Ecosystems | Developing and<br>Using Models                    | Systems and<br>System Models |



C. Producers have more available energy and use less energy to stay alive than consumers.

D. Producer populations are larger because plants have more sources of food than consumers.

**Narrative:** This item provides evidence of students' ability to **interpret a food pyramid model to explain the different numbers of producers and consumers in this system**. Though students are demonstrating understanding of a **SEP** and a **CCC** that are different from the PE, the item does provide evidence of growth toward understanding the PE. This item is rated DOK 2 because students are demonstrating their understanding of the **roles of organisms in ecosystems** and how to interpret a **model**.

## Instructional area 1: Life Sciences

Sub-area 1c: Heredity: Inheritance and Variations; Biological Evolution: Unity and Diversity

|                                                                                                                      | DCI⁺       | SEP"                                     | CCC              |
|----------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------|------------------|
| Aligned PE: HS-LS4-5 Evaluate the evidence supporting claims that changes in environmental conditions may result in: | Adaptation | Engaging<br>in Argument<br>from Evidence | Cause and Effect |
| 1. Increases in the number of individuals of some species                                                            |            |                                          |                  |
| 2. The emergence of new species over time                                                                            |            |                                          |                  |
| 3. The extinction of other species."                                                                                 |            |                                          |                  |
| NWEA learning statement: Relates extinction to                                                                       | Adaptation | None                                     | Cause and Effect |
| environmental change                                                                                                 |            |                                          |                  |
| Item RIT: 212 Item DOK: 2                                                                                            |            |                                          |                  |

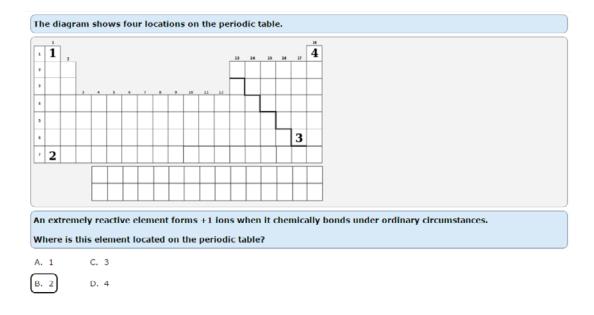
There are several competing theories that explain why dinosaurs became extinct. One theory states that an asteroid impact occurred causing a dust cloud that blocked sunlight. Another theory states that volcanic gas and dust in the atmosphere blocked sunlight.

Why are both these theories reasonable explanations for the extinction of the dinosaurs?

A. They both would have caused the temperature of Earth to increase.

B. They both would only have affected large animals such as dinosaurs.

C. They both would have resulted in less plant life and less available food.

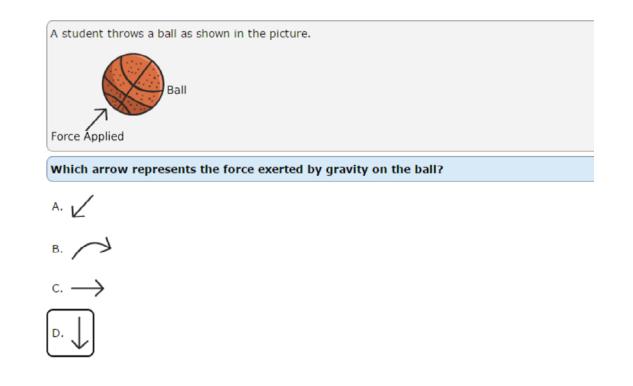

D. They both would have caused the instant extinction of dinosaurs worldwide.

**Narrative:** The item demonstrates students' understanding of the **relationship between environmental changes** and the **extinction of dinosaurs**. Notice this item does not provide evidence of students' abilities to engage in any **SEP**. This two-dimensional item is rated DOK 2 because students are demonstrating how **environmental changes affect organisms**.

### Instructional area 2: Physical Sciences

Sub-area 2a: Matter and Its Interactions

|                                                                                                                                                                                         | DCI⁺                                     | SEP"                           | ccc      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------|----------|
| Aligned PE: HS-PS1-1 Use the periodic table as a model to<br>predict the relative properties of elements based on the<br>patterns of electrons in the outermost energy level of atoms." | Structure and<br>Properties of<br>Matter | Developing and<br>Using Models | Patterns |
| NWEA learning statement: Uses the periodic table to predict patterns of properties of elements                                                                                          | Structure and<br>Properties of<br>Matter | Developing and<br>Using Models | Patterns |
| Item RIT: 237 Item DOK: 2                                                                                                                                                               |                                          |                                |          |




**Narrative:** The item provides evidence of students' ability to use **the properties of an element** to **locate its position in a model** according to **the patterns** used to construct the **periodic table**. This item provides understanding of the three dimensions of this high school PE. This item is rated DOK 2 because students use a **given model** instead of **constructing their own model**.

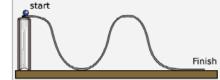
### Instructional area 2: Physical Sciences

Sub-area 2b: Motion and Stability: Forces and Interactions

|                                                                                                                                                                                                      | DCI⁺                     | SEP"                                              | CCC      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------|----------|
| Aligned PE: HS-PS2-4 Use mathematical representations of<br>Newton's Law of Gravitation and Coulomb's Law to describe<br>and predict the gravitational and electrostatic forces between<br>objects." | Types of<br>Interactions | Using<br>Mathematics<br>Computational<br>Thinking | Patterns |
| NWEA learning statement: Describes gravitational force on objects with models                                                                                                                        | Types of<br>Interactions | Developing and<br>Using Models                    | None     |
| Item RIT: 232 Item DOK: 2                                                                                                                                                                            |                          |                                                   |          |



**Narrative:** This item provides evidence of students' growth in their understanding of how to **use force arrows** to describe the **force of gravity** on a ball. This item provides evidence of students' ability to **use a model**, and though a different **SEP** than the PE, it does gather useful growth information. The item is rated DOK 2 because students are **using a given model**, not constructing one.


**MOP** GROWTH

## Instructional area 2: Physical Sciences

Sub-area 2c: Energy; Waves and their Applications in Technologies for Information Transfer

|                                                                                                                                                                | DCI⁺                              | SEP"                                          | CCC                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------|----------------------|
| Aligned PEs: HS-PS3-3 Design, build, and refine a device that<br>works within given constraints to convert one form of energy<br>into another form of energy." | Definitions of<br>Energy          | Constructing<br>Explanations<br>and Designing | Energy and<br>Matter |
|                                                                                                                                                                | Energy in<br>Chemical<br>Process  | Solutions                                     |                      |
| NWEA learning statement: Evaluates solutions to problems involving motion and energy                                                                           | Definitions of<br>Energy          | Constructing<br>Explanations<br>and Designing | Energy and<br>Matter |
| Item RIT: 204 Item DOK: 2                                                                                                                                      | Optimizing the<br>Design Solution | Solutions                                     |                      |

Students designed and built this marble roller coaster. The only constraints are that the marble must start at rest from a height of 20 cm. Their design failed, the marble did not get over the hill before the finish.



How should the students redesign their roller coaster?

A. The start should be closer to the hill so the marble rolls down a steeper slope and gathers more kinetic energy.

B. The start should be further from the hill so the marble can build up more kinetic energy as it approaches the hill.

C. The start should be lower than the top of the hill so the marble has less potential energy and more kinetic energy.

D. The start should be higher than the top of the hill so the marble has more potential energy to be converted to kinetic energy.

**Narrative:** This item provides evidence of students' growth in their understanding of optimizing a **solution to a problem** involving **energy and motion** using a **model**. Notice that this item aligns to both an Energy PE and an Engineering Design PE. This learning statement would appear in both the **energy forms** and **engineering solution optimizations** topics of the learning continuum reports, demonstrating how all engineering items are embedded in the disciplinary context of the items. This item is rated DOK 2 because students are applying a **disciplinary idea** to a common problem.

**MOD** GROWTH

#### Instructional area 3: Earth and Space Sciences

Sub-area 3a: Earth's Place in the Universe

| DCI⁺                           | SEP"                                                       | CCC                                                                                                                                                |
|--------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| The History of<br>Planet Earth | Constructing<br>Explanations<br>and Designing<br>Solutions | Stability and<br>Change                                                                                                                            |
| The History of<br>Planet Earth | Constructing<br>Explanations<br>and Designing              | Scale,<br>Proportion, and<br>Quantity                                                                                                              |
|                                | The History of<br>Planet Earth<br>The History of           | The History of<br>Planet EarthConstructing<br>Explanations<br>and Designing<br>SolutionsThe History of<br>Planet EarthConstructing<br>Explanations |

A student researching the geologic history of Earth noted these three facts:

- Iridium is an element common in meteorites and asteroids, but rare on the surface of Earth.
- Around the world, the rock layer separating the Mesozoic and Cenozoic Eras (65 million years ago) contains soil rich in iridium.
  In 1990, scientists found a crater 180 km across that is buried under sediments off the coast of Mexico.

Which conclusion can <u>most</u> likely be made based on these facts?

A. Earth was hit by a large asteroid around 65 million years ago.

B. Iridium was very common on Earth until 65 million years ago.

C. Meteorite impacts are very rare on Earth and always catastrophic.

D. Craters are formed in sedimentary rock when waves erode the coastal shore.

**Narrative:** This item provides evidence of students' growth in their understanding of how to **conclude from facts how Earth has changed from collisions with meteorites**. The item shows how common phrases like **"conclude from facts"** are consistent with the **SEP: Constructing Explanations**. This item is rated DOK 2 because students are not explaining their **reasoning or citing evidence from the facts presented**.

## Instructional area 3: Earth and Space Sciences

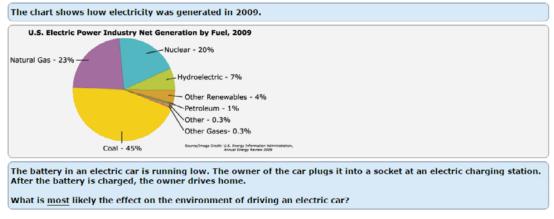
#### Sub-area 3b: Earth's Systems

|                                                                                                                                                | DCI <sup>+</sup>       | SEP"                                     | ccc                     |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------|-------------------------|
| Aligned PE: HS-ESS2-7 Construct an argument based on<br>evidence about the simultaneous coevolution of Earth's<br>systems and life on Earth.** | Weather and<br>Climate | Engaging in<br>Argument from<br>Evidence | Stability and<br>Change |
| systems and me on Larth.                                                                                                                       | Biogeology             | LVIdence                                 |                         |
| NWEA learning statement: Describes examples of the<br>coevolution of life and Earth's atmosphere                                               | Weather and<br>Climate | None                                     | Stability and<br>Change |
| Item RIT: 217 Item DOK: 2                                                                                                                      | Biogeology             |                                          |                         |

| Approximately 2 billion years ago, the accumulation of atmospheric oxygen led to the formation of an ozone layer in<br>Earth's atmosphere. The diagram shows Earth's ozone layer. |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Solar UV Radiation                                                                                                                                                                |  |  |  |  |  |
| How did the development of Earth's ozone layer affect the development of life on Earth?                                                                                           |  |  |  |  |  |
| A. It blocked damaging radiation, allowing species to leave the sea and evolve on land.                                                                                           |  |  |  |  |  |
| B. It allowed water vapor to condense, creating bodies of water that could support marine life.                                                                                   |  |  |  |  |  |
| C. It reduced the concentration of atmospheric oxygen, prompting anaerobic life forms to flourish.                                                                                |  |  |  |  |  |

D. It trapped infrared radiation, warming Earth's surface to make it hospitable to diverse life forms.

**Narrative:** This item provides evidence of students' growth in their ability to describe how the **formation of Earth's ozone layer allowed organisms to live on land**. This **coevolution** is an example of the **CCC: Stability and Change**. This two-dimensional item does not ask students to **engage in argumentation** or any other **SEP**. The 217 RIT indicates this is a difficult item for high school students.


\*\* NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press. + Washington State 2013 K-12 Science Learning Standards adopting the Next Generation Science Standards (2013).

#### **MOP** GROWTH

### Instructional area 3: Earth and Space Sciences

Sub-area 3c: Earth and Human Activity

|                                                                                                                                     | DCI <sup>+</sup>                                         | SEP"                                                       | ccc                     |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|-------------------------|
| Aligned PE: HS-ESS3-4 Evaluate or refine a technological solution<br>that reduces impacts of human activities on natural systems.** | Human Impacts on<br>Earth Systems                        | Constructing<br>Explanations<br>and Designing<br>Solutions | Stability and<br>Change |
| NWEA learning statement: Analyzes and interprets data to infer effects of human activity on ecosystems                              | Human Impacts<br>on Earth Systems                        | Analyzing and<br>Interpreting<br>Data                      | Cause and<br>Effect     |
| Item RIT: 238 Item DOK: 2                                                                                                           | Ecosystem<br>Dynamics,<br>Functioning,<br>and Resilience |                                                            |                         |



A. It increases noise pollution.

B. It indirectly produces greenhouse gases.

C. It depletes renewable resources of energy.

D. It indirectly adds water vapor to Earth's systems.

**Narrative:** The item provides evidence of students' growth in their ability to **analyze data in a pie chart of the energy resources** used in the USA and **predict** the **environmental effect** of electric cars. Notice that this three-dimensional item aligns to a different **SEP** and **CCC** than the PE while providing evidence of growth in understanding the PE. The item is rated DOK 2 because students are not asked **to explain how the data supports** their **predicted environmental effects**.

\*\* NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

+ Washington State 2013 K-12 Science Learning Standards adopting the Next

Generation Science Standards

#### nwea

©2022 NWEA. NWEA and MAP are registered trademarks, and MAP Growth is a trademark, of NWEA in the US and in other countries. The names of other companies and their products mentioned are the trademarks of their respective owners.

Next Generation Science Standards is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards were involved in the production of this product, and do not endorse it.